3D-Printed Tensegrity Object Can Change Shape

The technology creates a large, lightweight, strong object that can be flattened and then expanded to its full size when heated.

A team of researchers from the Georgia Institute of Technology has developed a way to use 3D printers to create objects capable of dramatic expansion. The technology could someday be used in applications ranging from space missions to biomedical devices. The new 3D-printed objects use tensegrity, a structural system of floating rods in compression and cables in continuous tension. The researchers fabricated the struts from shape memory polymers that unfold when heated.

Posted in: Briefs, Motion Control, Automation, Thermodynamics, Thermodynamics, Additive manufacturing, Fabrication, Materials properties, Polymers, Smart materials
Read More >>

Flat, Triangular Modules Connect to Form Origami Robot

Using two genderless mechanisms, module sides are connected and folded to create reconfigurable 3D structures.

Origami robots are composed of thin structures that can fold and unfold to change shape. They are compact and lightweight, but have functional restrictions related to size, shape, and how many folds can be created. On the other hand, modular robots use large numbers of individual entities to reconfigure the overall shape and address diverse tasks. These robots are more flexible when it comes to shape and configuration, but they are generally bulky and complex.

Posted in: Briefs, Motion Control, Automation, Sensors and actuators, Sensors and actuators, Fabrication, Robotics, Lightweight materials, Materials properties
Read More >>

Straws Help Create Simple Robot Joints

Plastic drinking straws and inflatable tubing are used to build machines that walk like insects.

Inspired by arthropod insects and spiders, Harvard professor George Whitesides and Alex Nemiroski, a former postdoctoral fellow in Whitesides’ Harvard lab, used ordinary plastic drinking straws to create a type of semi-soft robot capable of standing and walking. The team also created a robotic water strider capable of pushing itself along the liquid surface.

Posted in: Briefs, Motion Control, Automation, Design processes, Robotics, Materials properties, Plastics
Read More >>

Soft “Vinebot” Excels at Search and Rescue

Inspired by natural organisms like vines that cover distance by growing, researchers at Stanford University have created a soft, tubular robot that lengthens to explore hard-to-reach areas. The vine-like robot can grow across long distances without moving its whole body, which could prove useful in search-and-rescue operations and medical applications.

Posted in: INSIDER, Motion Control, Robotics
Read More >>

How the Dragonfly’s Brain Offers Insights for Robotic Vision

By carefully studying the neurons of the dragonfly, University of Adelaide PhD student Joseph Fabian discovered the predator’s keen way of catching its prey. Fabian and his fellow researchers hope to translate the insect’s complex neural processes into advances that support new applications in robotic vision and autonomous systems.

Posted in: News, Automation, Robotics
Read More >>

Self-Learning Robot Hands Adapt to Grasp Objects

A new grasp system with robotic hands works without previously knowing the characteristics of objects. The system, which learns by trial and error, was developed by researchers at Bielefeld University in Bielefeld, Germany. It features two hands that are based on human hands in terms of both shape and mobility. The robot brain for the hands must learn how everyday objects like pieces of fruit or tools can be distinguished based on their color or shape, as well as what matters when attempting to grasp the object; for example, a banana can be held, and a button can be pressed. The system learns to recognize such possibilities as characteristics, and constructs a model for interacting with and re-identifying the object.

Posted in: INSIDER, Motion Control, Positioning Equipment, Automation, Robotics
Read More >>

Crawling Robot is Powered by Moisture

Using an off-the-shelf camera flash, researchers at Jilin University, China, turned an ordinary sheet of graphene oxide into a material that bends when exposed to moisture. They then used this material to make a spider-like crawler and claw robot that move in response to changing humidity, without the need for any external power.

Posted in: INSIDER, Materials, Motion Control, Robotics
Read More >>

Fast-Tracking ADAS and Autonomous Vehicle Development with Simulation

In Conjunction with SAE

Developing Advanced Driver Assistance Systems (ADAS) and autonomous vehicles is a challenge without precedent. Whole new engineering fields – such as artificial intelligence – need to be developed, yet time-to-market is short with intense competition. Estimates indicate that billions of miles of road testing will be necessary to ensure safety and reliability of ADAS and autonomous vehicles. This impossible task can only be accomplished with the help of engineering simulation. With simulation, thousands of driving scenarios and design parameters can be virtually tested with precision, speed, and cost economy.

Posted in: On-Demand Webinars, Automation
Read More >>

Taking Manufacturing Control By Force

In today's data-driven world, there's no such thing as having too much information. From a product manufacturer's perspective, there are countless variables that can impact their production process. Among these variables are changes in force, where the slightest contact can make a major impact on efficiency and quality.

Posted in: White Papers, Manufacturing & Prototyping, Automation, Robotics, Sensors
Read More >>

Autonomous Combustion-Powered Hopping Robot

Applications include military assistance, law enforcement, search and rescue, and homeland security.

Robots are conventionally made mobile by rolling on wheels; however, wheeled robots have limited ability to traverse large obstacles. Obstacles much taller than the robot's wheels can prevent passage, and obstacles with significant horizontal gaps, such as trenches, can also prevent passage. One solution is to use bigger wheels and a bigger wheelbase. Both of these require more drive power, so the entire robot must be larger. This can be prohibitive in applications with cost, size, space, or transportation constraints that limit the size of robot that can be used.

Posted in: Briefs, Automation, Robotics, Autonomous vehicles, Vehicle dynamics
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.