Physical Sciences

Terrestrial Observation and Prediction System (TOPS)

Ames Research Center, Moffett Field, California

TOPS is a modeling software system that integrates data from satellite, aircraft, and ground sensors, and weather/climate models with application models to expeditiously produce operational nowcasts and forecasts of ecological conditions. TOPS allows determination of the options for different socio-economic and resource management approaches to dealing with fluctuations within our biosphere, and will help in mitigating potential negative impacts.

Posted in: Briefs, Green Design & Manufacturing, Physical Sciences, Simulation and modeling, Computer software / hardware, Computer software and hardware, Computer software / hardware, Computer software and hardware
Read More >>

Images of Change for iPad

NASA’s Jet Propulsion Laboratory, Pasadena, California

Images of Change provides a user-friendly mobile interface for exploring an extensive gallery of land-based and space-based images showing dramatic change over time on Earth. Hosted on NASA’s Global Climate Change website, Images of Change is designed to raise awareness of climate change, inspire curiosity and interest in the programs that create the images, and highlight the importance of global climate change research.

Posted in: Briefs, Green Design & Manufacturing, Physical Sciences, Imaging, Imaging and visualization, Imaging, Imaging and visualization
Read More >>

Characteristics of the Spliced Kennedy Space Center Doppler Radar Wind Profiler Database

Marshall Space Flight Center, Alabama

NASA relies on the Natural Environments (NE) Branch located at Marshall Space Flight Center (MSFC) to provide databases that represent the wind magnitudes and wind changes expected on day-of-launch (DOL) for vehicle programs that MSFC NE supports. MSFC NE has traditionally utilized weather balloon measurements to generate the wind profiles used in DOL loads and trajectory simulations. However, balloon measurement archives have three limitations in that (1) they do not contain a large enough sample to adequately represent the wind environment at extreme percentiles, (2) balloons could misrepresent the aloft wind environment due to their rise rate and drift characteristics, and (3) the Space Shuttle Program’s operational requirements significantly drove the atmosphere databases’ development. To help mitigate these limitations, MSFC NE used the 50-MHz Doppler Radar Wind Profiler (DRWP) at Kennedy Space Center (KSC) to validate balloon measurements on DOL during the SSP.

Posted in: Briefs, Green Design & Manufacturing, Physical Sciences, Radar, Radar, Test equipment and instrumentation
Read More >>

Hydrogen Peroxide for Microbial Growth Control in Space Potable Water Systems

This on-demand generator can provide the needed hydrogen peroxide levels for microbial growth control in potable water holding tanks and waterlines.

Marshall Space Flight Center, Alabama

NASA uses a biocide to prevent contamination of astronaut drinking water with harmful microorganisms. Concerns have arisen over existing biocides — that they’re inadequately effective, and may have toxic side effects when consumed. New microbial control methods are a priority. This need is addressed by using an electrochemical reactor for on-demand generation of hydrogen peroxide (H2O2) solutions. The device uses onboard resources only. The method eliminates the need for resupply items (reducing launch costs), and reduces toxicity risk.

Posted in: Briefs, Aerospace, Green Design & Manufacturing, Physical Sciences, Containers
Read More >>

Method of Water Regeneration From Waste and Cascade Distillation

Lyndon B. Johnson Space Center, Houston, Texas

Effective recovery of potable water from various streams and sources of wastewater, seawater, or contaminated water is a significant task for securing existence of human beings in space, terrestrial, and marine environments. Efficient purification of the wastewater is also a very important task for protection of the global environment. The existing and known methods of recovery of clean water from the wastewater are technically complicated, have low energy efficiency, consume processing material, and are bulky, heavy, and not cost effective.

Posted in: Briefs, Green Design & Manufacturing, Recycling Technologies, Physical Sciences, Water reclamation
Read More >>

Optical Fiber for Solar Cells

These materials enable new solar-powered devices that are small, lightweight, and can be used without connection to existing electrical grids.

Ames Research Center, Moffett Field, California

Polymeric and inorganic semiconductors offer relatively high quantum efficiencies, and are much less expensive and versatile to fabricate than non-amorphous silicon wafers. An optical fiber and cladding can be designed and fabricated to confine light for transport within ultraviolet and near-infrared media, using evanescent waves, and to transmit visible wavelength light for direct lighting.

Posted in: Briefs, Energy, Energy Storage, Solar Power, Materials, Fiber Optics, Physical Sciences, Solar energy, Fibers, Polymers, Semiconductors
Read More >>

Pumped Subsea Energy Storage

This technique would be applicable to offshore oil platforms and energy storage for public utilities.

NASA’s Jet Propulsion Laboratory, Pasadena, California

A local energy source is desired for near-shore and offshore applications. Gas generators, diesel generators, and long-length submerged power cables tend to be expensive. A proposed solution is to use offshore wind with some type of energy storage mechanism for up to 1 GW-h. Energy storage in batteries is too expensive and massive, and subsea compressed air energy storage (CAES) has not been proven for very deep depths. Furthermore, CAES involves very great temperature changes that result in large inefficiencies.

Posted in: Briefs, TSP, Energy, Energy Efficiency, Energy Storage, Solar Power, Wind Power, Physical Sciences, Energy storage systems, Energy storage systems, Wind power, Marine vehicles and equipment
Read More >>

Carbon Nanotube Tower-Based Supercapacitor

A new technology to create electrochemical double-layer supercapacitors is provided using carbon nanotubes as electrodes of the storage medium. This invention allows efficient transport between the capacitor electrodes through the porous nature of the nanotubes, and has a low interface resistance between the electrode material and the collector. Carbon nanotubes directly grown on a metal surface are used to improve the supercapacitor performance. The nanotubes offer a high surface area and usable porosity for a given volume and mass, both of which are highly desirable for supercapacitor operation.

Posted in: Briefs, Energy, Energy Storage, Materials, Nanotechnology, Physical Sciences, Ultracapacitors and supercapacitors, Ultracapacitors and supercapacitors, Metallurgy, Nanomaterials
Read More >>

A Continuous-Flow, Microfluidic, Microwave-Assisted Chemical Reactor

In industrial synthetic chemistry laboratories, reactions are generally carried out using batch-mode methodologies, stepwise reactions, and purifications to generate a final product. Each step has an associated yield of both the reaction itself and of the final purification that is largely dependent on the procedure being used, and the scientist carrying out the procedure. Continuous-flow reactors are one way of streamlining the process. Furthermore, microwave-enhanced, or microwave-assisted, chemistry has been demonstrated to aid in many of these areas; however, scaling has been a traditional problem with this technique.

Posted in: Articles, Briefs, TSP, Physical Sciences, RF & Microwave Electronics, Instrumentation, Test & Measurement, Research and development, Chemicals
Read More >>

Monolithic Dual Telescope for Compact Biaxial Lidar

A document discusses the Ultra Compact Cloud Physics Lidar, a biaxial lidar with a narrow receiver field of view. It requires tight optical alignment between the transmitter and receiver paths while flying on various aircraft over various temperatures and in the presence of vibration. To achieve optical crossover as close to the lidar as possible, the transmit and receive telescopes must be built very closely to each other.

Posted in: Tech Briefs, Articles, Briefs, TSP, Photonics, Physical Sciences, Optics, Optics, Vibration, Vibration, Aircraft
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.