Physical Sciences

Deep UV Discharge Lamps in Capillary Quartz Tubes with Light Output Coupled to an Optical Fiber

Researchers at Jet Propulsion Laboratory have come up with a novel approach to the simplification of the 194-nm light source and optical guidance in mercury trapped ion spectroscopy research. Mercury plasma is generated in a capillary tube with a diameter of a few hundred microns (in contrast to current lamp bulbs with a diameter of 13 mm). The deep ultraviolet (DUV) light from the plasma can be guided directly to the ions held in an ion trap in a vacuum system via a piece of DUV fiber that is fused at the end of the capillary tube.

Posted in: Briefs, Physical Sciences, Exterior lighting

Speech Acquisition and Automatic Speech Recognition for Integrated Spacesuit Audio Systems, Version II

Astronauts suffer from poor dexterity of their hands due to the clumsy spacesuit gloves during Extravehicular Activity (EVA) operations, and NASA has had a widely recognized but unmet need for novel human-machine interface technologies to facilitate data entry, communications, and robots or intelligent systems control. A speech interface driven by an astronaut’s own voice is ideal for EVA operations, since speech is the most natural, flexible, efficient, and economical form of human communication and information exchange.

Posted in: Briefs, TSP, Physical Sciences, Human factors, Human machine interface (HMI), Protective clothing

Advanced Sensor Technology for Algal Biotechnology

Advanced Sensor Technology for Algal Biotechnology (ASTAB) is an integrated package of water quality and algal physiology sensors designed to enable algae growers to increase significantly productivity and efficiency of their operations, optimize harvesting periods, and avoid losses of “batches” of algae through nutrient deficiencies and/or population shifts. This sensor technology is expected to increase process automation and performance in large-scale algal production facilities.

Posted in: Briefs, TSP, Physical Sciences, Sensors and actuators, Sensors and actuators, Water quality, Biological sciences

High-Speed Spectral Mapper

The Hyperspectral Infrared Imager (HyspIRI) spaceborne mission has two imaging sensors operating in the visible to shortwave infrared (VSWIR) and the thermal infrared (TIR), respectively. The HyspIRI-TIR imaging instrument is being developed for infrared mapping of the Earth in 8 spectral bands with a 5-day revisit time at the equator. The system will have 60-m ground resolution at nadir, 200-mK noise-equivalent temperature difference (NETD) for 300 K scenes, and 0.5 ºC absolute temperature accuracy. As the spacecraft moves in its polar orbit, a rotating scan mirror allows the telescope to view a 51º cross-track nadir strip, an internal blackbody target, and space, every 2.1 s. Combining the overlapping strips will yield a 51º (597-km) wide swath below the spacecraft.

Posted in: Briefs, TSP, Physical Sciences, Imaging, Imaging and visualization, Sensors and actuators, Imaging, Imaging and visualization, Sensors and actuators

Optical Phased Array with Digitally Enhanced Interferometry

A proof-of-concept technique has been developed for measuring and controlling the individual phases of array elements. Electro-optic steering and beam-forming of laser beams is an emerging field with devices such as optical phased arrays that are capable of steering with significantly reduced noise floors and that are faster by orders of magnitude.

Posted in: Briefs, TSP, Physical Sciences, Optics, Optics, Satellites

Mass Spectrometry of Spacecraft Contamination Using the Direct Analysis in Real-Time Ion Source

Mass spectrometry is presented as a powerful tool for the analysis of spacecraft contamination when coupled to the Direct Analysis in Real Time (DART) ionization source. DART technology is based on soft ionization and desorption using metastable helium (MSHe). This provides efficient sample introduction for the rapid analysis of polymers and bio-organic compounds. It is particularly useful to the evaluation of polymers that may outgas in the space environment. In addition, this approach provides sensitive analysis of bio-marker and organic compounds that may interfere with organic and life detection instruments on future spacecraft missions.

Posted in: Briefs, Physical Sciences, Biological sciences, Medical, health, and wellness, Polymers, Spacecraft

Lithium-Ion Battery Technologies with High Energy Density

There is a need to advance the development of high energy density batteries, along with other efficient alternative energy sources. The need for batteries having a higher energy capacity, versus a lower weight, is simple to understand when stated in a battery’s Watt hour per kilogram rating. The focus of this work is on secondary or rechargeable batteries.

Posted in: Briefs, Physical Sciences, Lithium-ion batteries, Lithium-ion batteries, Product development

Low-Cost Communications Concept for Smallsats: Opportunistic MSPA

Multiple Spacecraft Per Antenna (MSPA) techniques have been used for well over a decade to increase the efficient utilization of ground network assets while decreasing the antenna fees allocated to the missions. In the Deep Space Network’s traditional MSPA service, two missions that will be located within the same beam of a ground antenna (e.g., at Mars) can schedule to share the antenna and associated microwave electronics. The antenna, of course, must be equipped with two separate receivers — one for each spacecraft. Applying this MSPA service to more than two spacecraft at a time requires adding receivers. But adding lots of receiver and telemetry processor chains to each antenna to facilitate MSPA for multiple spacecraft within the same beam could prove prohibitively expensive for the Deep Space Network.

Posted in: Briefs, Physical Sciences, Antennas, Satellite communications, Telematics, Antennas, Satellite communications, Telematics

Spatial Standard Observer

An accurate visibility metric is produced with relatively few calculations.

This invention relates to the devices and methods for the measurement and/or for the specification of the perceptual intensity of a visual image, or the perceptual distance between a pair of images. Grayscale test and reference images are processed to produce test and reference luminance images. A luminance filter function is convolved with the reference luminance image to produce a local mean luminance reference image. Test and reference contrast images are produced from the local mean luminance reference image and the test and reference luminance images, respectively, and are followed by the application of a contrast sensitivity filter. The resulting images are combined according to mathematical prescriptions to produce a Just Noticeable Difference, JND value, indicative of a Spatial Standard Observer (SSO). Advantages of an SSO include a simple and efficient design that produces an accurate visibility metric with relatively few calculations.

Posted in: Briefs, TSP, Physical Sciences, Mathematical models, Imaging, Imaging and visualization, Imaging, Imaging and visualization, Test procedures

Use of Selective Oxidation Catalyst for Amperometric Sensing Electrode

A modified oxidation catalyst material can be used to build a carbon-monoxide-sensing electrode for amperometric sensors to overcome the typical cross-sensitivity of these sensors toward hydrogen. The technology will have applications in the emerging hydrogen fuel cell economy for monitoring traces of carbon monoxide in the fuel feed of hydrogen fuel cells.

Posted in: Briefs, Physical Sciences, Sensors and actuators, Sensors and actuators, Carbon monoxide, Catalysts, Fuel cells

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.