Robotics, Automation & Control

Machinery & Equipment Category Winner

Winner of an HP Workstation

Small-Area Thin-Film Heat Flux Sensor

Mahmoud Assaad
The Goodyear Tire & Rubber Co.
Akron, OH

This sensor is being used in tires of all types and sizes, and has also been applied to engineering products such as hoses, belts, and conveyor belts. The product can be used in components for process control, modeling validation, determination of cooling requirements, and general calorimetry in rocketry, aerospace, and automotive environments. The sensor allows transient, bidirectional heat flux measurements on curved and flexing surfaces over areas that are smaller than those allowed by other sensors. This makes it perfect for measuring the convective heat transfer coefficient on various parts of a rolling tire.

Since temperature is one of the primary damage indicators of a tire under service conditions, accurate prediction of the temperature in a tire is vital. The sensor provides the engineers, designers, and material scientists with a means of verifying that the temperature will not reach a level where rubber reversion can occur. This state can only be predicted with accurate heat transfer analysis of the tire. With this information, tire designers and material scientists will be better able to design a tire structure that will not have critical zones of high temperature anywhere within the tire cross-section.

This new sensor design consists of a Wheatstone resistor bridge fabricated onto a 1/4-mm (0.010") thick polyester film, with half the bridge on each side of the film. The temperature sensitive element is sputter-deposited platinum, patterned and applied using a photolithography technique, with line width and line spacing approximately 60 microns. With no heat flux applied to the sensor, all of the resistor bridge elements are at the same ambient temperature, and have the same initial resistance. With the application of heat flux, the resistance of the two elements of the bridge on the hot side of the polyester film changes due to platinum’s temperature coefficient of resistance.

The resistor elements of the bridge on the cold side of the polyester film also change resistance, but by a lesser amount. The change of the resistances unbalances the bridge, and a precise measure of the heat flux can be determined from the output based on the fractional change of the resistances and the excitation voltage. With the application of “negative” heat flux (that is, a reversed heat flow), the output of the bridge will change sign. Thus, the sensor determines the direction of heat flux as well as its magnitude.

For more information, contact the inventor at

Honorable Mentions

Automated 3-Axis Instant Printed Circuit Board Prototyping Machine

Ryan Anderson
Sandia National Laboratories
Albuquerque, NM

Today, printed circuit board (PCB) production involves cutting the board, printing the masking pattern, etching, rinsing, applying flux, drilling holes, and soldering components onto the board. This new method for creating a PCB involves cutting the board, drawing traces, drilling holes, and soldering the components. This machine has three axes of motion, each controlled by a small stepper motor. The three axes move a plate located on the front of the machine. Attached to this plate is a magnetic tool changer that allows the user to change between a silver-loaded pen and a drill. When the user is ready to create a PCB, a blank piece of C10 board is secured in the slot on the steel base of the machine, the silver loaded pen is attached to the tool changer, and the CNC is used to run the automated tool path.

LumenFlow 360-Degree View Imaging System

Harold Brunt
LumenFlow Corp.
Middleville, MI

This imaging system is a photonic device capable of illuminating the interior surface of any near-cylindrical object and then focusing the reflected light on the detector of a CCD camera (or any device configured to accept an image from a camera lens). The configurable system has the ability to resolve features as small as 20 microns along the interior of a cylindrical object within a range of diameters. Vertical walls, under-cut diameters, deep bores, or gaps beneath inserted components can be viewed and inspected. The system is inserted within the cylindrical surface, the image is captured, and areas of interest are identified and then analyzed. The device can be used in machine vision applications where automating bore inspection is not currently taking place.

Posted in: Articles, Automation, Tires and traction, Measurements, Sensors and actuators, Sensors and actuators, Thermal management, Thermal management

Yaskawa Controllers Help Echo Hill Upgrade Grinding Operation

Echo Hill Automation Inc., a Beamsville, Ontario, Canada company founded by mechanical engineers and brothers Dan and Harry Schellenberg, has grown from a small two-man operation to a successful manufacturer of centerless grinding automation, with the help of servomotors and controllers from Yaskawa Electric of Waukegan, IL. Centerless grinding automation is used for high production grinding, where tight tolerances and good part roundness has to be achieved.

Posted in: Application Briefs, Automation, Automation, Machining processes

Matrox Helps Military Vehicles Get the Robotic Touch

To camouflage an object is to hide it, conceal it so that it blends in with the surrounding environment. For the military, it’s a tactical necessity and can make the difference between a platoon’s success or failure, a soldier’s life or death. It’s no wonder that the military takes camouflage very seriously. Especially for vehicles.

Posted in: Application Briefs, Robotics, Body structures, Automation, Robotics, Spraying, Coatings Colorants and Finishes, Coatings, colorants, and finishes, Military vehicles and equipment

FARO Inspection Device Aids in Robot Calibration

Parallel Robotic Systems Company (Hampton, NH) designs and produces high-precision positioning systems to provide effective solutions for difficult motion problems, correct errors in automated welding lines, develop newer and better product designs, and further testing in bio-mechanical research.

Posted in: Application Briefs, Robotics, Calibration, Kinematics, Robotics, Biomechanics, Inspections

Machinery & Equipment Category Winner, "Create the Future" 2007 Design Contest

(Winner of an HP Workstation)

Cargo Management System

Jeremy Connell

Blacksburg, VA

Standard truck beds lack the ability to secure loose items easily. The Cargo Management System design employs various methods in order to increase functionality while maintaining normal truck bed usage. The platform has a maximum height of 2", allowing for an ultra-low profile while the rails are not in use. Four lateral adjustments mate with the sidewalls of the truck bed. This feature allows for application in trucks with different bed sizes. The rail gutters are slightly raised off the platform surface to mimic the standard truck bed and simultaneously limit lateral motions of items placed within the rails.

Posted in: Articles, Mechanical Components, Automation, Design processes

Solar-Powered Cooler and Heater for an Automobile Interior

A proposed apparatus would provide or augment cooling or heating of the interior of an automobile in the presence of sunlight. The apparatus could be added to an existing automobile, with little or no modification. Utilizing solar power, it would operate independently of the automobile engine. Hence, for example, it could augment the direct solar radiant heating through the windows of a car parked in a sunny location on a winter day, perhaps making it unnecessary to keep the engine running to maintain warmth.

Posted in: Briefs, TSP, Automation, Solar energy, Heating, ventilation, and air conditioning systems (HVAC), Heating, ventilation, and air conditioning systems (HVAC)

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.