Robotics, Automation & Control

Rescue Robot Has Remote Control Function

A group of researchers at Osaka University, Kobe University, Tohoku University, The University of Tokyo, and Tokyo Institute of Technology developed construction robots for disaster relief that solve the various challenges of conventional construction machines used in such situations. Using a prototype machine, verification tests were performed in places that represented disaster sites to confirm successful performance. This prototype looks like an ordinary hydraulic excavator, but uses the following technologies:

Posted in: Briefs, Automation, Robotics, Disaster and emergency management, Emergency management, Robotics, Construction vehicles and equipment, Rescue and emergency vehicles and equipment
Read More >>

Small Robot Has Outstanding Vertical Agility

Roboticists at the University of California, Berkeley, have designed a small robot that can leap into the air and then spring off a wall, or perform multiple vertical jumps in a row, resulting in what they claim is the highest robotic vertical jumping agility ever recorded. The agility of the robot opens new pathways of locomotion, and the researchers hope that one day this robot and other vertically agile robots can be used to jump around rubble in search and rescue missions.

Posted in: Briefs, Automation, Robotics, Performance upgrades, Robotics, Rescue and emergency vehicles and equipment, Vehicle dynamics
Read More >>

Interactive Robot Control System and Method of Use

Researchers at NASA’s Johnson Space Center (JSC), in collaboration with General Motors and Oceaneering, have designed a state-of-the-art, highly dexterous, humanoid robot: Robonaut 2 (R2). R2 is made up of multiple systems and subcomponents: vision systems, image-recognition systems, sensors, control algorithms, and much more. R2’s nearly 50 patented and patent-pending technologies have the potential to be game-changers in multiple industries. One of the most promising applications for the R2 technologies is in the area of hazardous environments. R2 has the capability to work in remote locations separate from the human controller. R2 can function autonomously, or it can be controlled by direct teleoperations.

Posted in: Briefs, Automation, Robotics, Artificial intelligence, Artificial intelligence, Human machine interface (HMI), Collaboration and partnering, Systems engineering, Robotics
Read More >>

Piezoelectric Actuator with Dual Horns that are Separately Controllable to Drive Miniature Vehicles Along a Single Axis

Actuators are a critical driver of all the mechanisms used in space, and improvements of their operation mechanism enhance mission capabilities. The disclosed invention is a new type of actuator that simultaneously drives dual mechanisms (e.g., rotors, wheels, etc.) at opposite sides of a piezoelectric stack using the generated vibrations. The actuator consists of dual-sided horns and is capable of operating ratcheting mechanisms through walls.

Posted in: Briefs, Automation, Sensors and actuators, Sensors and actuators, Performance upgrades, Vibration, Vibration, Electric drives, Spacecraft
Read More >>

Robot Powertrain Moves Toward Energy Autonomy

Inspecting the condition of dykes and other sea defense structures is typically a task for a team of robots. They consume a lot of energy to move across the dykes, perform tests, and communicate the results for six hours a day. Because charging stations are not a realistic scenario, University of Twente researcher Douwe Dresscher looked at making the robot as energy autonomous as possible. He obtained good results by having the robot store mechanical — rather than electrical — energy, and by introducing an innovative automatic gear box. The gear box is a modern version of the “variomatic” model used in Dutch DAF automobiles. While the variomatic uses a belt drive, the inspection robot uses two metal hemispheres.

Posted in: Briefs, Automation, Robotics, On-board energy sources, Product development, Robotics, Gears, Inspections, Marine vehicles and equipment
Read More >>

Evaluation Standard for Robotic Research

The Yale-CMU-Berkeley (YCB) Object and Model Set provides universal benchmarks for labs specializing in robotic manipulation and prosthetics. About two years ago, Aaron Dollar, an associate professor of mechanical engineering and materials science at Yale University, came up with the benchmark idea to bring a level of specificity and universality to manipulation tasks in robotics research. He enlisted the help of two former colleagues in the robotics community, Dr. Siddhartha Srinivasa from Carnegie-Mellon University and Dr. Pieter Abbeel of the University of California, Berkeley.

Posted in: Briefs, Motion Control, Automation, Kinematics, Research and development, Robotics, Quality standards, Quality standards, Biomechanics
Read More >>

Metallic Glass Shatters Gear Limitations

Gears play an essential role in precision robotics, and they can become a limiting factor when the robots must perform in space missions. In particular, the extreme temperatures of deep space pose numerous problems for successful gear operation. At NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, CA, technologist Douglas Hofmann and his collaborators aim to bypass the limitations of existing steel gears by creating gears from bulk metallic glass (BMG).

Posted in: Articles, Aerospace, Manufacturing & Prototyping, Metals, Mechanical Components, Motion Control, Motors & Drives, Power Transmission, Robotics, Robotics, Alloys, Glass, Gears, Durability, Durability, Spacecraft
Read More >>

GPGPU for Embedded Systems

High Performance Embedded Computer (HPEC) systems are now leaning toward using the specialized parallel computational speed and performance on General Purpose Graphic Processor Units (GPGPUs). Providing that power and performance in a rugged, extended temperature small form factor (SFF) can be challenging.

Posted in: White Papers, Aeronautics, Defense, Automation, Robotics
Read More >>

Searching, Exploring and Visualizing Data Using Maple

With the ever-expanding sea of available data and data repositories, navigating the vast quantities of information can be a difficult task. Maple, the advanced computing software from Maplesoft, is a powerful and interactive data visualization tool that can help users understand data characteristics through various techniques for visualization and analysis. Maple makes it easy to search, filter, explore and visualize varying types and quantities of data. This paper presents several examples of how Maple can be used to search and filter large data repositories, explore and visualize the data in innovative ways and use the data to predict future behavior.

Posted in: White Papers, Manufacturing & Prototyping, Automation, Robotics, Electronics & Computers, Software
Read More >>

Tool Helps Design Soft Robots That Can Bend and Twist

Designing a soft robot to move organically — to bend like a finger or twist like a wrist — has always been a process of trial and error. Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering have developed a method to automatically design soft actuators based on the desired movement.

Posted in: News, Implants & Prosthetics, Motion Control, Robotics, Computer-Aided Design (CAD), Software
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.