Special Coverage

NASA Supercomputer Simulations Reveal 'Noisy' Aerodynamics
Robotic Gripper Cleans Up Space Debris
Soft Robot “Walks” on Any Terrain
Defense Advanced Research Projects Agency
Using Microwaves to Produce High-Quality Graphene
Transducer-Actuator Systems for On-Machine Measurements and Automatic Part Alignment
Wide-Area Surveillance Using HD LWIR Uncooled Sensors
Heavy Lift Wing in Ground (WIG) Cargo Flying Boat
Technique Provides Security for Multi-Robot Systems
Bringing New Vision to Laser Material Processing Systems
NASA Tests Lasers’ Ability to Transmit Data from Space

Robotic Gripper Cleans Up Space Debris

Large amounts of existing space debris pose a threat to satellites, space vehicles, and astronauts aboard those vehicles. However, cleaning up the debris is problematic. For example, suction cups don't work in a vacuum, and traditional sticky substances like tape are largely useless because the chemicals they rely on can't withstand extreme temperature swings.

Posted in: Briefs, Motion Control
Read More >>

Computational Tool Simplifies Creating Machines That Bend

Replacing rigid joints and linkages with mechanisms that bend offers a number of potential advantages, even as it makes designing devices more difficult. A computational design tool developed by Disney Research promises to make this transition from rigid to compliant mechanisms easier. The tool can take a design for a conventional, rigidly articulated device and automatically substitute parts that achieve the same function through flexibility, drawing from existing catalogs of compliant mechanisms.

Posted in: Briefs, Motion Control
Read More >>

Electromagnetic Actuator Decouples Linear and Rotary Motions

A lightweight module for rapid, accurate, and versatile positioning of semiconductor chips features a novel electromechanical actuator that can move objects both linearly and rotationally. The technology was developed by researchers at the A*STAR Singapore Institute of Manufacturing Technology (A*STAR SIMTech) and National University of Singapore (SIMTech-NUS) Joint Lab.

Posted in: Briefs, Motion Control
Read More >>

Wireless Magnetic Field Powers Folding Robots

Folding robots based on origami have emerged as an exciting new frontier of robotic design. However, they generally require onboard batteries or a wired connection to a power source, making them bulkier and clunkier than their paper inspiration and limiting their functionality. A team of researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering has created battery-free folding robots that are capable of complex, repeatable movements powered and controlled through a wireless magnetic field.

Posted in: Briefs, Motion Control
Read More >>

Harmonic Air Motor Offers Very High Efficiency

Currently available air motors have many advantages over electric motors. They are more compact, lighter-weight, instantly reversible without sparking, create no heat buildup, are undamaged by stalling or overloading, and supply extremely broad torque and speed range. Generally available commercial air motors, however, have only 5% to 20% of ideal efficiency. The Harmonic Air Motor developed at Lawrence Livermore National Laboratory has all these advantages of air motors, but also offers a proven efficiency more than 60% of ideal, higher low-end torque than available commercial air motors, and can be manufactured at lower cost.

Posted in: Briefs, Motion Control
Read More >>

Optical Sensor for Unknown Gas Detection

Gas sensors are usually engineered to detect a specific molecule in one of many potential categories: toxic gases, combustible gases, and VOCs. A number of technologies, such as infrared, photoionization, catalytic, and electrochemical, are used to test for differing molecular species. Each method has specifications for resolution, sensitivity, temperature, and humidity range. Gas sensors are most useful when they have high sensitivity and flexibility in the gases they can detect.

Posted in: Briefs, Sensors
Read More >>

Occupancy Sensing Using Wi-Fi Routers

In 2015, commercial and residential buildings accounted for 40% of the energy consumption in the United States according to the U.S. Energy Information Administration. As the owners of these buildings seek to decrease costs and reduce energy consumption they have begun to adopt building energy management systems (BEMS). BEMS have developed alongside intelligent building technologies such as sensors and wireless networks to manage energy usage, and according to expert services firm Navigant, the global BEMS market is expected to grow at an estimated CAGR of 18.2% to $12.8 Billion in 2025.

Posted in: Briefs, Sensors
Read More >>

Expert in A Suitcase Cuts Power Bills 10% In Small Commercial Buildings

The Sensor Suitcase is a portable case that contains easy-to-use sensors and other equipment that make it possible for anyone to identify energy-saving opportunities in small commercial buildings. The automated and reusable system combines hardware and software in one package so its users can identify cost-effective measures that can save small commercial buildings about 10 percent on their energy bills. It helps someone with minimal training collect and automatically process building data, which the system uses to generate specific recommendations to improve energy efficiency.

Posted in: Briefs, Sensors
Read More >>

Clean Water with Sandia Sensor Solution

Water utilities have a Goldilocks problem: If they don't add enough chlorine, nasty bacteria that cause typhoid and cholera survive the purification process. Too much chlorine produces disinfection byproducts such as chloroform, which increase cancer risks. The amount of chlorine needs to be “just right” for safe drinking water.

Posted in: Briefs, Sensors
Read More >>

Project Helps Provide More Precise Detection and Understanding of Seismic Activity In Oklahoma

Induced seismicity is earthquake activity that occurs because of changes in subsurface stress brought about by human activity. Using geology, geophysics, reservoir modeling, and rock mechanics to develop assessment models, this project evaluated the potential for, and increase in, seismic activity in central Oklahoma, including the relationship between oil and gas operations and induced seismicity. The study confirmed and more fully investigated the link between increased seismic activity and wastewater disposal, which significantly increased between July 1, 2014, and the end of 2015. Over the course of the study, more than 95 percent of the earthquakes in Oklahoma occurred in a small portion of the state, where about 70 percent of wastewater was injected.

Posted in: Briefs, Sensors
Read More >>

White Papers

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.