Special Coverage

Soft Robot “Walks” on Any Terrain
Defense Advanced Research Projects Agency
Using Microwaves to Produce High-Quality Graphene
Transducer-Actuator Systems for On-Machine Measurements and Automatic Part Alignment
Wide-Area Surveillance Using HD LWIR Uncooled Sensors
Heavy Lift Wing in Ground (WIG) Cargo Flying Boat
Technique Provides Security for Multi-Robot Systems
Bringing New Vision to Laser Material Processing Systems
NASA Tests Lasers’ Ability to Transmit Data from Space
Converting from Hydraulic Cylinders to Electric Actuators
Automating Optimization and Design Tasks Across Disciplines

Drone Control: How the Human Brain Can Guide Robotic Swarms

Who needs a keyboard, a mouse, or a joystick? A researcher from Arizona State University wants to command machines with the human brain.

Posted in: News, News, Aeronautics, Aerospace, Aviation, Motion Control

Robotic Inspector Traverses Water Pipes

A compact robot can inspect water or gas pipes to find leaks from the inside.

Today's water distribution systems lose an average of 20 percent of their supply because of leaks. Current leak-detection systems are expensive and slow to operate, and they don't work well in systems that use wood, clay, or plastic pipes. A robotic system developed by researchers at MIT could provide a fast, inexpensive way to find even tiny leaks with pinpoint precision, no matter what the pipes are made of.

Posted in: Briefs, Motion Control

Robotic Gripper Cleans Up Space Debris

Gecko-inspired adhesives and a custom gripper create a device for grabbing objects in zero-gravty settings.

Large amounts of existing space debris pose a threat to satellites, space vehicles, and astronauts aboard those vehicles. However, cleaning up the debris is problematic. For example, suction cups don't work in a vacuum, and traditional sticky substances like tape are largely useless because the chemicals they rely on can't withstand extreme temperature swings.

Posted in: Briefs, Motion Control

Computational Tool Simplifies Creating Machines That Bend

Non-expert users can generate compliant versions of conventional, rigidly-articulated mechanisms, which are then readily produced via 3D printing.

Replacing rigid joints and linkages with mechanisms that bend offers a number of potential advantages, even as it makes designing devices more difficult. A computational design tool developed by Disney Research promises to make this transition from rigid to compliant mechanisms easier. The tool can take a design for a conventional, rigidly articulated device and automatically substitute parts that achieve the same function through flexibility, drawing from existing catalogs of compliant mechanisms.

Posted in: Briefs, Motion Control

Electromagnetic Actuator Decouples Linear and Rotary Motions

A lightweight module uses a novel electromechanical actuator for rapid, accurate, and versatile positioning of semiconductor chips.

A lightweight module for rapid, accurate, and versatile positioning of semiconductor chips features a novel electromechanical actuator that can move objects both linearly and rotationally. The technology was developed by researchers at the A*STAR Singapore Institute of Manufacturing Technology (A*STAR SIMTech) and National University of Singapore (SIMTech-NUS) Joint Lab.

Posted in: Briefs, Motion Control

Wireless Magnetic Field Powers Folding Robots

Electromagnetic fields and actuator “muscles” allow folding robots to move without batteries.

Folding robots based on origami have emerged as an exciting new frontier of robotic design. However, they generally require onboard batteries or a wired connection to a power source, making them bulkier and clunkier than their paper inspiration and limiting their functionality. A team of researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering has created battery-free folding robots that are capable of complex, repeatable movements powered and controlled through a wireless magnetic field.

Posted in: Briefs, Motion Control

Harmonic Air Motor Offers Very High Efficiency

This motor can be used in environments too hazardous for electric motors or internal combustion motors, such as with flammable atmospheres or materials.

Currently available air motors have many advantages over electric motors. They are more compact, lighter-weight, instantly reversible without sparking, create no heat buildup, are undamaged by stalling or overloading, and supply extremely broad torque and speed range. Generally available commercial air motors, however, have only 5% to 20% of ideal efficiency. The Harmonic Air Motor developed at Lawrence Livermore National Laboratory has all these advantages of air motors, but also offers a proven efficiency more than 60% of ideal, higher low-end torque than available commercial air motors, and can be manufactured at lower cost.

Posted in: Briefs, Motion Control

Origami Techniques Expand Compacted Spacecraft

Origami has once again inspired engineers at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. Besides aesthetic beauty, the Japanese tradition of paper-folding addresses a persistent problem faced by JPL engineers: how do you pack the greatest amount of spacecraft into the smallest volume possible?

Posted in: INSIDER, Aerospace, Joining & Assembly, Motion Control

Self-Folding Electronics Could Enable Advanced Robotics

MIT researchers have developed a way to print flat electronics that can fold themselves into a desired shape. The researchers say the development could have applications in robotics and human-machine interfaces.

Posted in: INSIDER, Electronics, Motion Control, Robotics

Webb Telescope Actuators Move with Microscopic Accuracy

The James Webb Space Telescope will be the most powerful space telescope ever built. With a 21-foot diameter, the telescope’s primary mirror is six times larger than the one used by the Hubble Space Telescope. In order for such a large mirror to travel into space, it has to be broken up into multiple segments; in this case, 18 of them. But for the 18 to act as one primary mirror, they have to be adjusted while in orbit.

Posted in: INSIDER, Joining & Assembly, Mechanical Components, Motion Control, Motors & Drives, Positioning Equipment, Optical Components, Optics

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.