Special Coverage

NASA Supercomputer Simulations Reveal 'Noisy' Aerodynamics
Robotic Gripper Cleans Up Space Debris
Soft Robot “Walks” on Any Terrain
Defense Advanced Research Projects Agency
Using Microwaves to Produce High-Quality Graphene
Transducer-Actuator Systems for On-Machine Measurements and Automatic Part Alignment
Wide-Area Surveillance Using HD LWIR Uncooled Sensors
Heavy Lift Wing in Ground (WIG) Cargo Flying Boat
Technique Provides Security for Multi-Robot Systems
Bringing New Vision to Laser Material Processing Systems
NASA Tests Lasers’ Ability to Transmit Data from Space

Pumping Efficiency Into Electric Motors

University of Adelaide (Australia) researchers are using new magnetic materials to develop revolutionary electrical motors and generators that promise significant energy savings. They have used the new motors to develop patented highly efficient water pump systems with potential widespread application.

Posted in: News, Motors & Drives
Read More >>

NASA Decelerators Slow Payloads Traveling at Supersonic Speed

What will it take to land heavier spacecraft on Mars? How will engineers slow large payloads traveling at supersonic speeds in a thin Martian atmosphere? The Low Density Supersonic Decelerator (LDSD) mission will seek to answer these questions.

Posted in: News, Aerospace, Motion Control, Motors & Drives, Power Transmission, Automation, Test & Measurement
Read More >>

New Strain Gauge Enables 'Soft Machines'

Purdue University researchers have developed a technique to embed a liquid-alloy pattern inside a rubber-like polymer to form a network of sensors. The approach may be used to produce "soft machines" made of elastic materials and liquid metals.

Such an elastic technology could be used to create robots with sensory skin, as well as develop stretchable garments that interact with computers.

"What's exciting about the soft strain gauge is that it can detect very high strains and can deform with almost any material," said Rebecca Kramer, an assistant professor of mechanical engineering at Purdue University. "The skin around your joints undergoes about 50 percent strain when you bend a limb, so if you wanted to have sensory skin and wearable technology that tracks your movement you need to employ soft, stretchable materials that won't restrict your natural range of motion."

Source

Also: Learn about Thermal Properties of Microstrain Gauges.

Posted in: News, Materials, Metals, Plastics, Motion Control, Automation, Robotics, Sensors
Read More >>

High-Temperature Actuators for Aircraft Propulsion Systems

Future “more electric aircraft” (MEA) will require electric actuation systems for control surfaces and engine controls. Electric motors, drive electronics, and mechanisms are essential elements of aircraft actuation in MEAs that incorporate Electro-Magnetic Actuators (EMAs). High-temperature environments experienced in aircraft applications place demands on actuator components, materials, and insulation systems that dictate the use of new technologies and materials.

Posted in: Articles, Motion Control, Flight control actuators, Flight control actuators, Thermal management, Thermal management, Heat resistant materials, Electric motors
Read More >>

Probe Positioning System for Antenna Range

In situ measurements of antenna patterns on rovers in a simulated terrain are difficult to make with conventional antenna range techniques. The desired pattern data covers a hemisphere above the antenna of interest, which is close to the ground. This is incompatible with traditional measurements that place the antenna under test on a movable support that tilts and rotates.

Posted in: Briefs, TSP, Motion Control, Antennas, Sensors and actuators, Antennas, Sensors and actuators, Spacecraft
Read More >>

Fluidic Actuators with No Moving Parts

Two new fluidic actuator designs were developed to control fluid flow in ways that will ultimately result in improved system performance and fuel efficiency in to improve the aerodynamic performance of a variety of vehicles. These flow control actuators, often referred to as fluidic oscillators or sweeping jet actuators, utilize the Coanda effect to generate spatially oscillating bursts (or jets). They can be embedded directly into a control surface (such as a wing or a turbine blade) to help reduce flow separation, increase lift, reduce drag, enhance mixing, or increase heat transfer. Recent studies show up to a 60% performance enhancement (such as increased lift or reduced drag) with fluidic actuators.

Posted in: Briefs, TSP, Motion Control, Sensors and actuators, Sensors and actuators, Aerodynamics
Read More >>

Submersible Pressure Transducer for Tank Fluid Level Monitoring

Monitoring the level of liquid can be accomplished through the use of a pressure transducer. The density of the liquid and its height create pressure on the diaphragm of the pressure transducer to generate an accurate and cost-effective level measurement. Generally, pressure transducers can be used for level measurement from 10 inches of water column up to 10,000 PSI (700 bar).

Posted in: Application Briefs, Motion Control, Sensors and actuators, Sensors and actuators
Read More >>

New Algorithms Enable Self-Assembling, Printable Robots

In two new papers, MIT researchers demonstrate the promise of printable robotic components that, when heated, automatically fold into prescribed three-dimensional configurations.

One paper describes a system that takes a digital specification of a 3-D shape — such as a computer-aided design, or CAD, file — and generates the 2-D patterns that would enable a piece of plastic to reproduce it through self-folding.

The other paper explains how to build electrical components from self-folding laser-cut materials. The researchers present designs for resistors, inductors, and capacitors, as well as sensors and actuators — the electromechanical “muscles” that enable robots’ movements.

“We have this big dream of the hardware compiler, where you can specify, ‘I want a robot that will play with my cat,’ or ‘I want a robot that will clean the floor,’ and from this high-level specification, you actually generate a working device,” said Daniela Rus, the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT.

Source

Also: Learn about Self-Assembling, Flexible, Pre-Ceramic Composite Preforms.

Posted in: News, Electronic Components, Electronics & Computers, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Motion Control, Motors & Drives, Power Transmission, Automation, Robotics, Sensors, Computer-Aided Design (CAD), Mathematical/Scientific Software, Software
Read More >>

Wind Tunnel Tests Support Improved Design of B61-12 Bomb

Sandia National Laboratories has finished testing a full-scale mock unit representing the aerodynamic characteristics of the B61-12 gravity bomb in a wind tunnel. The tests on the mock-up were done to establish the configuration that will deliver the necessary spin motion of the bomb during freefall and are an important milestone in the Life Extension Program to deliver a new version of the aging system.

Posted in: News, Aerospace, Defense, Motion Control, Motors & Drives, Test & Measurement
Read More >>

Aircraft Engine Coating Could Triple Service Life and Save Fuel

Researchers at University West in Sweden are using nanoparticles in the heat-insulating surface layer that protects aircraft engines from heat. In tests, this increased the service life of the coating by 300%. The hope is that motors with the new layers will be in production within two years. The surface layer is sprayed on top of the metal components. Thanks to this extra layer, the engine is shielded from heat. The temperature can also be raised, which leads to increased efficiency, reduced emissions, and decreased fuel consumption.

Posted in: News, Aerospace, Aviation, Energy, Energy Efficiency, Ceramics, Coatings & Adhesives, Materials, Motion Control, Nanotechnology, Power Transmission
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.