Special Coverage

NASA Supercomputer Simulations Reveal 'Noisy' Aerodynamics
Robotic Gripper Cleans Up Space Debris
Soft Robot “Walks” on Any Terrain
Defense Advanced Research Projects Agency
Using Microwaves to Produce High-Quality Graphene
Transducer-Actuator Systems for On-Machine Measurements and Automatic Part Alignment
Wide-Area Surveillance Using HD LWIR Uncooled Sensors
Heavy Lift Wing in Ground (WIG) Cargo Flying Boat
Technique Provides Security for Multi-Robot Systems
Bringing New Vision to Laser Material Processing Systems
NASA Tests Lasers’ Ability to Transmit Data from Space

Selecting the Correct Actuator

The need for actuators has grown exponentially. Nearly everywhere you look you can see pneumatic, hydraulic, or electric actuator systems at work in an endless variety of applications. There are many stereotypes surrounding these three types of motion systems, and while some of the ideas may stand true, many of the thoughts we have associated with these components are outdated and need to be revisited. Whereas you may think that your application's need for actuation rests on one specific type of actuator, technological advances have allowed us to reexamine the specifics of each, which could mean more than one option for your project.

Posted in: Articles, Motion Control

MOTOR DRIVES: Build or Buy

Every system design presents a unique set of specifications regarding cost, space, time-to-market, and other factors. Designers must therefore make tradeoffs to meet these requirements, such as opting for a higher priced component to meet a stringent space constraint. For a motion application, design engineers can either source motion control components as complete self-contained units or build their own in-house, and each option has its pros and cons.

Posted in: Articles, Motion Control

Inch vs. Metric Ball Screws: Are You Asking the Right Questions?

Because ball screws are available in both inch and metric dimensions, designers sometimes begin the specification process by selecting a product family based on the unit of measure. This decision may prematurely exclude the ideal product for the application and lead to significant losses in time, labor, and expense. This article explains how sizing and selection questions centered on performance — instead of monikers — can lead to more efficient linear motion designs.

Posted in: Articles, Motion Control

Reduce Compressed Air Costs with Proper Air Cylinder Sizing

There may be no stronger ally of electrical power utilities than industrial size air compressors, as they drone on every day, taking atmospheric air and transforming it into useful energy. Countless kilowatt hours are gobbled up in a mechanical conversion of electrical power into pneumatic power, a process that is wickedly inefficient, with one horsepower of pneumatic energy costing six times as much to generate when compared to one horsepower of electrical energy. Nevertheless, with its tremendous versatility, efficiency, and widespread use throughout many sectors, compressed air provides a clean, reliable source of pneumatic power that has a value outweighing its cost to produce.

Posted in: Articles, Motion Control, Sensors and actuators, Sensors and actuators, Electric power, Hydraulic and pneumatic hybrid power, Compressors, Pneumatic systems

Energy Management Through Direct Drive Servo Technology

Direct drive servo motor and drive technology has many advantages. It reduces an axis’ parts count, mechanical losses, and often its objectionable noise. What’s more, it also increases the machine’s efficiency, lowering operation cost for the user due to its inertia ratio as compared to the more common mechanically advantaged multi-body axis designs. Reducing the mechanical transmission components (gearboxes, timing belts, pulleys, cams, lead screws, etc.) between the motor and its load is only part of the savings.

Posted in: Articles, Motion Control, Engine efficiency, Rotary engines

Smart Actuators Add Brains to Automation Brawn

Actuators have always been on the frontline of automation, providing the “push and pull” that extends human capabilities to operate everything from delicate pick-and-place applications to 10-ton agricultural combines. Now, as the industrial world becomes increasingly digitized and connected, a new generation of actuators is fulfilling that role with more intelligence, simplicity, and economy, while overcoming increasingly challenging environmental conditions.

Posted in: Articles, Motion Control, Electronic equipment, Sensors and actuators, Switches, Electronic equipment, Sensors and actuators, Switches, Automation, Robotics

Eliminate Interference from Converter Output

Electromagnetic compatibility (EMC) in frequency converters can be very problematic if not addressed properly in the initial design. EMC ensures the proper operation of devices to avoid negative electromagnetic interference (EMI) effects. Good design takes into account the control, design, and function of each device to prevent such interference.

Posted in: Articles, Motion Control, Electromagnetic compatibility, Electromagnetic compatibility, Chokes

Sizing and Selecting Linear Motion Systems

Virtually all manufacturing processes incorporate some type of linear motion. A common mistake that designers make when sizing and selecting linear motion systems is to overlook critical application requirements in the final system. This can lead to redesigns, and may also result in an over-engineered system that is costlier and less effective than desired. “LOSTPED” is a simple acronym that guides the designer in gathering the information needed to specify the appropriate linear motion components or modules in any given application.

Posted in: Articles, Motion Control, Systems engineering, Manufacturing equipment and machinery, Manufacturing processes

Piezo Technology in Pneumatic Valves

Pneumatic valves made with piezo technology offer many advantages. They are small, lightweight, extremely precise, durable, fast, and save energy. Piezo valves do not need energy to maintain a switching status, and therefore generate almost no heat. What's more, piezo valves can potentially be operated without any noise. Another key advantage is that they always work proportionally.

Posted in: Articles, Motion Control, Parts, Valves, Pneumatic systems

Adding Simple Vision Systems to Collaborative Robots

Adding vision to a collaborative robot can open a world of possibilities for automation applications. With a vision system, a robot can inspect parts, check specific features of a part, recognize a part to pick it up, count items, adjust its path using visual feedback, color sort, and so on. The breadth of applications requires careful consideration to ensure selection of the right technology for the job.

Posted in: Articles, Motion Control, Imaging, Imaging and visualization, Imaging, Imaging and visualization, Automation, Robotics

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.