Special Coverage

Soft Robot “Walks” on Any Terrain
Defense Advanced Research Projects Agency
Using Microwaves to Produce High-Quality Graphene
Transducer-Actuator Systems for On-Machine Measurements and Automatic Part Alignment
Wide-Area Surveillance Using HD LWIR Uncooled Sensors
Heavy Lift Wing in Ground (WIG) Cargo Flying Boat
Technique Provides Security for Multi-Robot Systems
Bringing New Vision to Laser Material Processing Systems
NASA Tests Lasers’ Ability to Transmit Data from Space
Converting from Hydraulic Cylinders to Electric Actuators
Automating Optimization and Design Tasks Across Disciplines

Researchers Develop a Way to Control Material with Voltage

A new way of switching the magnetic properties of a material using just a small applied voltage, developed by researchers at MIT and collaborators elsewhere, could signal the beginning of a new family of materials with a variety of switchable properties. The technique could ultimately be used to control properties other than magnetism, including reflectivity or thermal conductivity. The first application of the new finding is likely to be a new kind of memory chip that requires no power to maintain data once it’s written, drastically lowering its overall power needs. This could be especially useful for mobile devices, where battery life is often a major limitation.

Posted in: News, Batteries, Board-Level Electronics, Electronic Components, Electronics & Computers, Power Management, Materials, Metals, Semiconductors & ICs
Read More >>

Garnet Ceramics Could Be the Key to High-Energy Lithium Batteries

Scientists at the Department of Energy’s Oak Ridge National Laboratory have discovered exceptional properties in a garnet material that could enable development of higher-energy battery designs. The ORNL-led team used scanning transmission electron microscopy to take an atomic-level look at a cubic garnet material called LLZO. The researchers found the material to be highly stable in a range of aqueous environments, making the compound a promising component in new battery configurations.

Posted in: News, Batteries, Electronic Components, Electronics & Computers, Power Management, Energy, Energy Efficiency, Ceramics, Materials, Semiconductors & ICs
Read More >>

Radiation Hard By Design (RHBD) Electronics

Under certain conditions, a false signal will be absorbed and a correct signal will be generated.

Goddard Space Flight Center, Greenbelt, Maryland

Current RHBD electronics are limited to speeds that approximate 250 MHz, regardless of the electronic process. The fact that determines the final speed is based on the nature of the current SEU (single-event upsets) radiation-tolerant latches, and the data flow between the latches through combinational logic.

Posted in: Briefs, TSP, Semiconductors & ICs, Electronic equipment, Electronic equipment
Read More >>

Detecting Loss of Configuration Access of Reprogrammable FPGA Without External Circuitry

This innovation makes use of the clearing of distributed memory that results from configuration refreshes.

The configuration of the reprogrammable field-programmable gate array (FPGA) currently on the market is very susceptible to single event upset when it operates in radiation environments. The current state-of-the-art approach is to refresh the configuration while the FPGA is operating. When using this approach, it is essential to detect the loss of configuration access while the FPGA is operating in a radiation environment, allowing the system to initiate a configuration access recovery.

Posted in: Briefs, TSP, Semiconductors & ICs, Electronic control systems, Electronic control systems
Read More >>

Micro-Coil Spring Interconnection for Ceramic Grid Array Packaged Integrated Circuits

This interconnection method extends the useful life of ceramic area array integrated circuits.

Marshall Space Flight Center, Alabama

This method of interconnecting ceramic integrated circuits to organic printed circuit boards (PCBs) is designed to substantially increase the life of the interconnections. This is accomplished by providing a means of compensating for the shear stresses produced by thermal excursions as a result of the large mismatch of coefficients of thermal expansion between the integrated circuit and the printed circuit board.

Posted in: Briefs, Semiconductors & ICs, Electronic equipment, Electronic equipment, Ceramics
Read More >>

Method for Formal Verification of Polymorphic Heterogeneous Multicore Processors

John H. Glenn Research Center, Cleveland, Ohio

Amethod was developed to model polymorphic heterogeneous multicore processors at a high level of abstraction, and formally verify them. The Bahurupi polymorphic heterogeneous multi-core architecture allows the combination of multiple simple processor cores — which can be superscalar — in order to form a coalition that behaves like a wider superscalar processor. This is done at runtime under software directives, allowing the architecture to adapt to the needs of executed applications with high instruction level parallelism. Such coalitions of cores were found to have comparable or better performance than that of a wide superscalar processor with issue width equal to the sum of the issue widths of the simple cores in the coalition, while avoiding the complexity, reliability issues, and high power consumption of wide superscalar cores. All of these are highly desirable advantages of future microprocessors that will be optimized for aerospace applications.

Posted in: Briefs, TSP, Semiconductors & ICs, Architecture, Architecture, Semiconductors
Read More >>

SEE Mitigation Technique for Self-Timed Circuits and Rad-Hard, Self-Timed Configurable Memory

The new block RAM is faster and consumes less power than conventional block RAMs, while providing unparalleled levels of radiation resilience.

Marshall Space Flight Center, Alabama

To enable NASA’s next-generation missions, there is a critical need for a reconfigurable field programmable gate array (FPGA) that can withstand the wide temperature ranges and radiation of the space environment while consuming minimal power without compromising on performance. To address this need, GoofyFoot Labs developed the E2-AMP FPGA, a radiation-hardened, high-performance, low-power FPGA capable of operating reliably over wide temperature ranges and rapid thermal changes.

Posted in: Briefs, Semiconductors & ICs, Electronic equipment, Electronic equipment
Read More >>

Modeling for Partitioned and Multicore Flight Software Systems

NASA’s Jet Propulsion Laboratory, Pasadena, California

The current flight software approach is monolithic in nature. Every module has tentacles that reach deep within dozens of other software modules. Because of these interdependencies between modules, functionality is difficult to extract and reuse for other missions.

Posted in: Briefs, TSP, Semiconductors & ICs, Architecture, Computer software / hardware, Computer software and hardware, Flight control systems, Architecture, Computer software / hardware, Computer software and hardware, Flight control systems, Semiconductors
Read More >>

Technique Generates Electricity from Mechanical Vibrations

Research scientists at VTT Technical Research Centre of Finland have demonstrated a new technique for generating electrical energy. The method can be used in harvesting energy from mechanical vibrations of the environment and converting it into electricity. Energy harvesters are needed in wireless self-powered sensors and medical implants, where they could ultimately replace batteries. The technology could be introduced on an industrial scale within three to six years.

Posted in: News, Electronics & Computers, Power Management, Energy, Energy Harvesting, Semiconductors & ICs
Read More >>

New System Could Prolong Power in Mobile Devices

Researchers from The University of Texas at Dallas have created technology that could be the first step toward wearable computers with self-contained power sources or, more immediately, a smartphone that doesn’t die after a few hours of heavy use. The technology taps into the power of a single electron to control energy consumption inside transistors, which are at the core of most modern electronic systems.

Posted in: News, Electronic Components, Electronics & Computers, PCs/Portable Computers, Power Management, Semiconductors & ICs
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.