Special Coverage

Home

NASA Completes Successful Test of Saucer-Shaped Vehicle for Mars Missions

NASA completed a near-space test flight of NASA's Low-Density Supersonic Decelerator (LDSD), developed to evaluate new landing technologies for future Mars missions. While this initial test was designed to determine the flying ability of the vehicle, it also deployed two new landing technologies as a bonus. Those landing technologies will be officially tested in the next two flights, involving clones of the saucer-shaped vehicle.

Posted in: Test & Measurement, Aerospace, Aviation, Machinery & Automation, News

Read More >>

Gas Flow Measurement Technology Packs Hundreds of Sensors Into One Optical Fiber

By fusing together the concepts of active fiber sensors and high-temperature fiber sensors, a team of researchers at the University of Pittsburgh has created an all-optical high-temperature sensor for gas flow measurements that operates at record-setting temperatures above 800 °C. This technology is expected to find industrial sensing applications in harsh environments ranging from deep geothermal drill cores to the interiors of nuclear reactors to the cold vacuum of space missions, and it may eventually be extended to many others.

Posted in: Photonics, Fiber Optics, Optics, Sensors, Detectors, Geothermal Power, Energy, Test & Measurement, Measuring Instruments, Aerospace, News

Read More >>

The Road to Lightweight Vehicles

With a steady rise in fuel prices and increasing restrictions on emissions, automakers face difficult challenges as they are forced to find ways of making their cars lighter and more fuel-efficient. One way to achieve this goal is to incorporate strong, lightweight, and durable composite materials to replace heavier, more energy-hungry materials.

Posted in: Blog

Read More >>

NASA’s High-Flying Laser Altimeter Measures Summer Sea Ice

When NASA launches the Ice, Cloud and land Elevation Satellite-2, or ICESat-2, in 2017, it will measure Earth’s elevation by sending out pulses of green laser light and timing how long it takes individual photons to bounce off Earth’s surface and return. The number and patterns of photons that come back depend on the type of ice they bounce off – whether it’s smooth or rough, watery or snow-covered.To get a preview of what summertime will look like to ICESat-2, NASA scientists, engineers, and pilots have traveled to Fairbanks, Alaska, to fly an airborne test bed instrument called the Multiple Altimeter Beam Experimental Lidar, or MABEL. MABEL collects data in the same way that ICESat-2’s instrument will – with lasers and photon-detectors. The data from the Alaskan campaign will allow researchers to develop computer programs, or algorithms, to analyze the information from ICESat-2.“We need to give scientists data to enable them to develop algorithms that work during summer,” said Thorsten Markus, ICESat-2’s project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “All the algorithms need to be tested and in place by the time of launch. And one thing that was missing was ICESat-2-like data on the summer conditions.”Between July 12 and August 1, MABEL will fly aboard NASA’s high-altitude ER-2 aircraft as the Arctic sea ice and glaciers are melting. In its half-dozen flights, the instrument will take measurements of the sea ice and Alaska’s southern glaciers, as well as forests, lakes, open ocean, the atmosphere and more, sending data back to researchers on the ground.SourceAlso: Learn about the Debris & ICE Mapping Analysis Tool (DIMAT).

Posted in: Electronics & Computers, Photonics, Lasers & Laser Systems, Environmental Monitoring, Green Design & Manufacturing, Test & Measurement, Measuring Instruments, Aerospace, Aviation, RF & Microwave Electronics, Data Acquisition, News

Read More >>

Engineers Use Resin Inks, 3D Printing to Build Lightweight Cellular Composites

Like other manufactured products that use sandwich panel construction to achieve a combination of light weight and strength, turbine blades contain carefully arrayed strips of balsa wood from Ecuador, which provides 95 percent of the world’s supply.As turbine makers produce ever-larger blades—the longest now measure 75 meters, almost matching the wingspan of an Airbus A380 jetliner—they must be engineered to operate virtually maintenance-free for decades. In order to meet more demanding specifications for precision, weight, and quality consistency, manufacturers are searching for new sandwich construction material options.Now, using a cocktail of fiber-reinforced epoxy-based thermosetting resins and 3D extrusion printing techniques, materials scientists at the Harvard School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering have developed lightweight cellular composite materials.The work could have applications in many fields, including the automotive industry where lighter materials hold the key to achieving aggressive government-mandated fuel economy standards. SourceAlso: See more Materials tech briefs.

Posted in: Manufacturing & Prototyping, Rapid Prototyping & Tooling, Materials, Composites, Aerospace, Aviation, News

Read More >>

Testing Astronaut-Controlled Surface Robots from the International Space Station

NASA and the European Space Agency (ESA) are currently developing robots that can be remotely operated on planetary surfaces by astronauts in orbiting spacecraft. The primary objective of this work is to test and demonstrate crew-controlled communications, operations, and telerobotic technologies that are needed for future deep space human exploration missions.

Posted in: Electronics & Computers, White Papers, Briefs

Read More >>

Step on It! Walking for Power

What would be an alternative energy resource that could work well in the middle of a crowded city? The answer was a technology that harvests mechanical energy of walking feet and converts it to electrical energy via a special floor tile. But it was a big step from theory to practical design.

Posted in: Electronics & Computers, White Papers, Briefs

Read More >>