Special Coverage

Mechanoresponsive Healing Polymers
Variable Permeability Magnetometer Systems and Methods for Aerospace Applicationst
Evaluation Standard for Robotic Research
Small Robot Has Outstanding Vertical Agility
Smart Optical Material Characterization System and Method
Lightweight, Flexible Thermal Protection System for Fire Protection
High-Precision Electric Gate for Time-of-Flight Ion Mass Spectrometers
Polyimide Wire Insulation Repair System
Distributed Propulsion Concepts and Superparamagnetic Energy Harvesting Hummingbird Engine
Home

Wireless Sensing System Using Open-Circuit, Electrically Conductive Spiral-Trace Sensor

This low-profile inductance-capacitance sensor is suitable for small packaging.NASA Langley Research Center researchers have developed a wireless, low-profile sensor that uses a magnetic field response measurement acquisition system to provide power to the sensor and to acquire physical property measurements from it. Unique to this sensor is the shape of the electrical trace that eliminates the need for separate inductance, capacitance, and connection circuitry. This feature gives the sensor a smaller circuit footprint to enable a smaller, flexible, and easy-to-fabricate sensor package. The shape of the electrical trace can be readily modified to sense different physical properties. Also, arranging multiple low-profile sensors together can permit the wireless data acquisition system to read the responses from all the sensors by powering just one of them.

Posted in: Briefs, Sensors

Read More >>

Variable Permeability Magnetometer Systems and Methods for Aerospace Applications

This technology exploits the varying permeability of a magnetic material with ambient magnetic fields.NASA's Langley Research Center has developed a magnetometer that takes advantage of the unique variable permeability properties of Metglas 2714A magnetic material. By measuring directly the inductive reactance of a simple right circular cylindrical search coil through the application of current from a high-output-impedance current source driven with a 10-kHz sinusoidal voltage, a magnetic field sensor having a 700-Hz bandwidth, good linearity, and excellent noise performance with sensitivity at least as good as the 0.1 nTesla range was produced.

Posted in: Briefs, Sensors

Read More >>

Methods for Intercalating and Exfoliating Hexagonal Boron Nitride

Innovators at NASA's Glenn Research Center have developed a number of materials and methods to optimize the performance of nanomaterials by making them tougher, more resistant, and easier to process. Glenn's scientists are generating critical improvements at all stages of nanomaterial production, from finding new ways to produce nanomaterials, to purifying them to work more effectively with advanced composites, to devising innovative techniques to incorporate them into matrices, veils, and coatings. These advances can be used to deposit protective coatings for textile-based composite materials, layer carbon nanotubes to add reinforcement, upgrade the properties of carbon ceramic matrix composites (CMCs), and integrate nanomaterial fibers into polymer matrix composites (PMCs). The field of nanomaterials is expanding rapidly, and NASA's Glenn Research Center is just as rapidly creating newer and better ways to deploy nanomaterials in industry and research.

Posted in: Briefs, Materials

Read More >>

Method for Fabricating Diamond-Dispersed, Fiber-Reinforced Composite Coating on Low-Temperature Sliding Thrust Bearing Interfaces

Innovators at NASA's Glenn Research Center have developed a method for fabricating a fiber-reinforced diamond composite coating on the surfaces of sliding thrust bearings at low and cryogenic temperatures. The innovative composite coating is a mixture of diamond particles, organic chemicals, and fibers or fabrics. The diamond particles provide high hardness, and the fibers and binding matrix provide high-fracture toughness. Glenn's fabrication method can be tailored to meet a range of performance requirements for lightweight, low-temperature sliding thrust bearing applications. For example, the volume fraction of diamond particles can be increased to enhance the hardness of the composite coating, or the volume fraction of binding matrix can be increased to enhance its crack or fracture resistance. Glenn's method offers a diamond composite coating that is more cost-effective, wear-resistant, and fracture-tough than existing alternatives.

Posted in: Briefs, Materials

Read More >>

Enhanced Composite Damping Through Engineered Interfaces

Material damping is important in the design of structures as it limits vibration amplitudes, increases fatigue life, and affects impact resistance. This is particularly true for composite materials, which are currently used extensively in applications that experience frequent dynamic loading. Furthermore, the damping capacity of composites can be significantly greater than that of standard engineering materials. Like other performance parameters of composites (e.g., stiffness, strength, density), the effective damping capacity of composite materials is dependent not only on the damping properties of the constituent materials, but also microstructural details such as fiber volume fraction, fiber orientation, ply stack up, fiber packing array, and weave pattern in woven composites. Therefore, like other performance parameters, composite damping capacity can be engineered.

Posted in: Briefs, Materials

Read More >>

Mechanoresponsive Healing Polymers

Polymer strands utilize mechanically responsive chemical groups to induce self-healing.NASA's Langley Research Center is developing an innovative self-healing resin that automatically reacts to mechanical stimuli. Current structural materials are not self-healing, making it necessary to depend on complicated and potentially destructive repair methods and long down times. Unlike other proposed self-healing materials that use microencapsulated healing agents, this technology utilizes viscoelastic properties from inherent structure properties. The resulting technology is a self-healing material with rapid rates of healing and a wide range of use temperatures.

Posted in: Briefs, Materials

Read More >>

Methodology for the Effective Stabilization of Tin-Oxide-Based Oxidation/Reduction Catalysts

NASA Langley researchers, in work spanning more than a decade, have developed a portfolio of technologies for low-temperature gas catalysis. Originally developed to support space-based CO2 lasers, the technology has evolved into an array of performance capabilities and processing approaches, with potential applications ranging from indoor air filtration to automotive catalytic converters and industrial smokestack applications. The technology has been used commercially in systems that provide clean air to racecar drivers, as well as incorporated into commercially available filtration systems for diesel mining equipment. Backed with extensive research on these technologies, NASA welcomes interest in the portfolio for other commercial and industrial applications.

Posted in: Briefs, Materials

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.