Power Management
New System Could Prolong Power in Mobile Devices
Posted in Electronics & Computers, Electronic Components, Power Management, PCs/Portable Computers, Semiconductors & ICs, News on Monday, 27 October 2014
Researchers from The University of Texas at Dallas have created technology that could be the first step toward wearable computers with self-contained power sources or, more immediately, a smartphone that doesn’t die after a few hours of heavy use. The technology taps into the power of a single electron to control energy consumption inside transistors, which are at the core of most modern electronic systems.
Read More >>
Improved Fuel Cells Could Replace Phone and Laptop Batteries
Posted in Electronics & Computers, Power Management, Energy Storage, Energy Efficiency, Energy, News on Monday, 27 October 2014
Fuel cells could replace batteries in mobile phones and laptop computers, and the UPV/EHU-University of the Basque Country is looking at ways of enhancing their efficiency. Researchers are designing new ways of obtaining energy in a cleaner, safer, and more affordable way. Fuel cells are totally appropriate systems for substituting the batteries of such devices. They turn the energy resulting from the combining of hydrogen and oxygen into electrical power, with water vapor being the only waste product.
Read More >>
Researchers Develop Thinnest Electric Generator
Posted in Electronics & Computers, Electronic Components, Electronics, Power Management, Materials, Metals, Sensors, Semiconductors & ICs, News on Friday, 17 October 2014
Researchers from Columbia Engineering and the Georgia Institute of Technology made the first experimental observation of piezoelectricity and the piezotronic effect in an atomically thin material, molybdenum disulfide (MoS2), resulting in a unique electric generator and mechanosensation devices that are optically transparent, extremely light, and very bendable and stretchable.

“This material—just a single layer of atoms—could be made as a wearable device, perhaps integrated into clothing, to convert energy from your body movement to electricity and power wearable sensors or medical devices, or perhaps supply enough energy to charge your cell phone in your pocket,” says James Hone, professor of mechanical engineering at Columbia and co-leader of the research.

Hone’s team placed thin flakes of MoS2 on flexible plastic substrates and determined how their crystal lattices were oriented using optical techniques. They then patterned metal electrodes onto the flakes. In research done at Georgia Tech, a group led by Zhong Lin Wang, Regents’ Professor in Georgia Tech’s School of Materials Science and Engineering, installed measurement electrodes on the samples provided by Hone’s group, then measured current flows as the samples were mechanically deformed. They monitored the conversion of mechanical to electrical energy, and observed voltage and current outputs.

Ultimately, Zhong Lin Wang notes, the research could lead to complete atomic-thick nanosystems that are self-powered by harvesting mechanical energy from the environment. This study also reveals the piezotronic effect in two-dimensional materials for the first time, which greatly expands the application of layered materials for human-machine interfacing, robotics, MEMS, and active flexible electronics.

Source Also: Learn more about a Piezoelectric Energy Harvesting Transducer System.
Read More >>
No-Power Wi-Fi Connectivity Could Fuel Internet of Things
Posted in Electronics & Computers, Power Management, Sensors, Test & Measurement, Monitoring, Communications, Wireless, RF & Microwave Electronics, News, Products on Friday, 17 October 2014
Imagine a world in which your wristwatch or other wearable device communicates directly with your online profiles, storing information about your daily activities where you can best access it, all without requiring batteries. Or, battery-free sensors embedded around your home that could track minute-by-minute temperature changes and send that information to your thermostat to help conserve energy.
Read More >>
Ferroelectric Materials Could Revolutionize Data-Driven Devices
Posted in Electronics & Computers, Electronic Components, Board-Level Electronics, Electronics, Power Management, Computers, Materials, Metals, Test & Measurement, Measuring Instruments, News on Friday, 17 October 2014
Electronic devices with unprecedented efficiency and data storage may someday run on ferroelectrics — remarkable materials that use built-in electric polarizations to read and write digital information, outperforming the magnets that are inside most popular data-driven technology. But ferroelectrics must first overcome a few key stumbling blocks, including a curious habit of "forgetting" stored data. Now, however, scientists at the U.S. Department of Energy's Brookhaven National Laboratory have discovered nanoscale asymmetries and charge preferences hidden within ferroelectrics that may explain their operational limits.
Read More >>
Fast-Charging Batteries Have 20-Year Lifespan
Posted in Batteries, Electronics & Computers, Power Management, Green Design & Manufacturing, Materials, Transportation, Automotive, Nanotechnology, News on Tuesday, 14 October 2014
Scientists at Nanyang Technology University (NTU) have developed ultra-fast charging batteries that can be recharged up to 70 percent in only two minutes.

The new-generation batteries also have a long lifespan of over 20 years, more than 10 times compared to existing lithium-ion batteries.

In the new NTU-developed battery, the traditional graphite used for the anode (negative pole) in lithium-ion batteries is replaced with a new gel material made from titanium dioxide. Titanium dioxide is an abundant, cheap and safe material found in soil.

Naturally found in spherical shape, the NTU team has found a way to transform the titanium dioxide into tiny nanotubes, which is a thousand times thinner than the diameter of a human hair. The development speeds up the chemical reactions taking place in the new battery, allowing for superfast charging. 

The breakthrough has a wide-ranging impact on all industries, especially for electric vehicles, where consumers are put off by the long recharge times and its limited battery life.

Source

Also: Learn about a Screening Technique for New Battery Chemistries.
Read More >>
Robots Restore Electricity After Power Outages
Posted in Batteries, Electronics & Computers, Power Management, Energy Storage, Solar Power, Energy, Communications, Wireless, Machinery & Automation, Robotics, News on Friday, 10 October 2014
A team led by Nina Mahmoudian of Michigan Technological University has developed a tabletop model of a robot team that can bring power to places that need it the most.

“If we can regain power in communication towers, then we can find the people we need to rescue,” says Mahmoudian, an assistant professor of mechanical engineering–engineering mechanics. “And the human rescuers can communicate with each other.”

Unfortunately, cell towers are often located in hard-to-reach places, she says. “If we could deploy robots there, that would be the first step toward recovery.”

The team has programmed robots to restore power in small electrical networks, linking up power cords and batteries to light a little lamp or set a flag to waving with a small electrical motor. The robots operate independently, choosing the shortest path and avoiding obstacles, just as you would want them to if they were hooking up an emergency power source to a cell tower.

“Our robots can carry batteries, or possibly a photovoltaic system or a generator,” Mahmoudian said. The team is also working with Wayne Weaver, the Dave House Associate Professor of Electrical Engineering, to incorporate a power converter, since different systems and countries have different electrical requirements.

Source

Also: Learn about Locomotion of Amorphous Surface Robots.
Read More >>