Thermal Management

2016 Create the Future Contest: Automotive & Transportation Category Winner


Krishan Arora, Mike Baker, Glenn Barber, Peter Brett, Ross Dewhurst, Melvyn Dover, John Gamston, Steven Goodier, Annie Leeson, Vincent Panel, Ben Russell, Alessandra Scotese, Oliver Taylor, Julian Von Thungen-Reichenbach-Evans, Chris Wilks, John Ward-Zinski, and Roy Williamson

Castrol, Oxford, UK

Castrol’s NEXCEL system is a sealed oil cell that contains both the engine oil and the oil filter, so it can be easily removed and replaced by hand in about 90 seconds versus 20 minutes for a conventional oil change. The sealed cell ensures that used oil is collected and handled safely, facilitating enhanced recycling and reuse of the waste oil into high-quality lubricants through a dedicated re-refining process.

Posted in: Articles, Automotive, Thermal Management, Recycling Technologies, Design processes, Engine lubricants, Maintenance, repair, and service operations

Nanotube-Based Device Cooling System

These cooling systems can be used for electronic devices in the computer manufacturing, thermal management, and semiconductor industries.

Carbon nanotubes (CNTs) are being studied for use in high-strength/lowweight composites and other applications. Recent research on thermal dissipation materials for high-power electronic devices is generating a lot of interest in various industries. Carbon nano tubes have attracted much attention due to their extraordinary mechanical and unique electronic properties. Computer chips have been subjected to higher and higher thermal loads, and it is challenging to find new ways to perform heat dissipation. As a result, heat dissipation demand for computer systems is increasing dramatically.

Posted in: Briefs, Electronic Components, Electronics & Computers, Thermal Management, Electronic equipment, Thermal management, Cooling, Composite materials, Nanomaterials

High-Energy-Density Solid-State Li-Ion Battery with Enhanced Safety

John H. Glenn Research Center, Cleveland, Ohio

High-energy-density and safe rechargeable batteries are required for NASA’s future exploration missions. Lithium-ion (Li-ion) batteries are attractive energy storage systems due to their relatively high energy and power densities. However, the unfavorable side reactions between the electrodes and the liquid electrolyte adversely impact performance. These interfacial reactions are in the form of either anodic oxidation of the electrolyte, or dissolution of the cathode into the electrolyte. As a result, the practical capacity and cycle life of the battery are limited. More importantly, the reactions at the cathode-electrolyte interface pose a serious threat to safety due to the electrolyte decomposition and formation of gaseous products within the cell. In addition, growth of lithium dendrite on the anode can cause cell short circuit and lead to fire or even explosion in the presence of liquid electrolyte.

Posted in: Briefs, Thermal Management, Energy, Energy Storage, Battery cell chemistry, Lithium-ion batteries, Safety testing and procedures, Spacecraft

Self-Diagnostic Accelerometer Field Programmable Gate Array

The system could be utilized as a portable and temporarily installed diagnostic system.

John H. Glenn Research Center, Cleveland, Ohio

The development of the self-diagnostic accelerometer (SDA) is important to both reducing the in-flight shutdowns (IFSD) rate — and hence reducing the rate at which this component failure type can put an aircraft in jeopardy — and also as a critical enabling technology for future automated malfunction diagnostic systems. Critical sensors, such as engine sensors, are inaccessible to the operator during typical operation due to safety concerns and enclosed environment. The SDA can diagnose the sensor in-flight and remotely with minimal interference with the typical operation of the sensor. The SDA system utilizes programmed health algorithms that can automatically determine the health, therefore increasing the precision in diagnosing sensor faults by removing the erroneous perspective and opinions of a human operator. The health of the sensor could also be determined immediately, which would remove its erroneous effect on a system that depends on the sensor.

Posted in: Briefs, TSP, Electronics & Computers, Power Supplies, Thermal Management, Sensors, On-board diagnostics, On-board diagnostics (OBD), Safety critical systems, Sensors and actuators, Spacecraft

Capacitively Coupled, High-Voltage Current Sensing for Extreme Environments

NASA’s Jet Propulsion Laboratory, Pasadena, California

Wide-temperature and extreme-environment electronics are crucial to future missions. These missions will not have the weight and power budget for heavy harnesses and large, inefficient warm boxes. In addition, extreme-environment electronics, by their inherent nature, allow operation next to sensors in the ambient environment, reducing noise and improving precision over the warm-box-based systems employed today.

Posted in: Briefs, TSP, Electronic Components, Electronics & Computers, Power Supplies, Thermal Management, Sensors, Electronic equipment, High voltage systems, Sensors and actuators

New Thermal Management Strategies for Medical Devices

Heat pipes and vapor chambers are being utilized to address challenging thermal management requirements.

In an increasing number of medical device applications, thermal issues limit the overall performance and reliability of the system. Basic thermal management strategies such as liquid cold plates, air cooled heat sinks, and thermal interface materials are becoming insufficient as stand-alone solutions. In many new medical applications, implementation of advanced thermal technologies such as heat pipes and vapor chambers are becoming an integral part of the thermal management solution. These technologies offer excellent heat transfer and heat spreading performance. Furthermore, they are passive (no energy, no moving parts), quiet, and reliable. Several medical devices, such as powered surgical forceps, skin/tissue contacting devices, and polymerase chain reaction (PCR)/thermocyclers already use these technologies, and more applications are emerging. A discussion of heat pipe and vapor chamber operation and selected medical device applications follows.

Posted in: Briefs, MDB, Briefs, Thermal Management, Manufacturing & Prototyping, Bio-Medical, Medical, Medical equipment and supplies, Thermal management

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.