Electrical/Electronics

Radiation-Hardened, High-Voltage, Quad-Channel Amplifier

Goddard Space Flight Center, Greenbelt, Maryland Aradiation-hard, 130-Volt, 100-KHzcapable, quad-channel operational amplifier with corresponding power supply and 6th-order Bessel filter circuitry has been designed, fabricated, and successfully tested. To control two-axis microelectromechanical systems (MEMS)-based mirrors, a differential high-voltage amplifier is required. The bandwidth of these mirrors is generally

Posted in: Briefs

Read More >>

Reduced-Cost, Chirped Pulse, Fourier Transform Microwave (CP-FTMW) Spectrometer Using Direct Digital Synthesis

This technology could be used to further extend the bandwidth of the instrument. Goddard Space Flight Center, Greenbelt, Maryland Microwave spectroscopy is an invaluable tool for studying the structure, dynamics, and even the handedness of gas phase species. In particular, the specificity of microwave spectroscopy has been central to the unambiguous identification of the great majority of molecules detected in the interstellar medium. Applications of microwave techniques to problems in physical chemistry and molecular astrophysics have been greatly accelerated by developments in laboratory techniques.

Posted in: Briefs

Read More >>

Signal Digitizer and Cross-Correlation ASIC

The device can correlate outputs from a large number of receivers. NASA’s Jet Propulsion Laboratory, Pasadena, California Microwave interferometry provides a means of synthesizing large scanning antennas that are not otherwise physically practical for spaceborne Earth observational systems. By cross-correlating multiple receivers of an array, high-resolution images are synthesized from a sparse — or thinned — array of small antennas rather than relying on extremely large mechanically scanned antennas. For Earth observations from space, high-datarate cross correlators are required that operate with low power and have low mass and complexity. ASIC (application-specific integrated circuit) cross-correlators are an enabling technology for space-based interferometry. An ASIC CMOS (complementary metal-oxide semiconductor) cross-correlator was developed to correlate outputs from a large number of receivers.

Posted in: Briefs

Read More >>

Image Capture to Stereo Correlation in an FPGA

NASA’s Jet Propulsion Laboratory, Pasadena, California In this work, there were four independent vision modules implemented in an FPGA: a CameraLink camera interface, rectification, bilateral filtering, and stereo disparity correlation. Each module was originally designed to run from end to end, not in a pipeline with the other modules. This limited throughput to 3.75 Hz.

Posted in: Briefs

Read More >>

Offset IQ Modulation Technique for Miniaturized Radar Electronics

This innovation can be used in aerospace and commercial weather radar applications. NASA’s Jet Propulsion Laboratory, Pasadena, California Constellations of low-cost, small instruments provide global, distributed, and frequent coverage, enabling unique science observations. However, radars are active instruments with size, mass, and power requirements that are often not compatible with small satellite platforms such as CubeSats or SmallSats.

Posted in: Briefs

Read More >>

Scenario Power Load Analysis Tool (SPLAT) MagicDraw Plug-in

The SPLAT tool could be applied to any project that needs to track time-dependent power consumption; it computes power usage profiles based on modeled component information and scenarios. NASA’s Jet Propulsion Laboratory, Pasadena, California Power consumption during all phases of spacecraft flight is of great interest to the aerospace community. As a result, significant analysis effort is exerted by both system and electrical-domain engineers to understand the rates of electrical energy generation and consumption under many operational scenarios of the system. Previously, no standard tool existed for creating and maintaining a Power Equipment List (PEL) of spacecraft components that consume power, and no standard tool existed for generating power load profiles based on this PEL information during mission design phases. Projects have traditionally either developed ad-hoc spreadsheet-based tools, or adapted complex simulation tools to compute such resource predictions; both of these approaches have significant limitations.

Posted in: Briefs, Power Management

Read More >>

Wideband, GaN MMIC, Distributed Amplifier-Based Microwave Power Module

The solid-state module operates as a radar, communication, or navigation system. John H. Glenn Research Center, Cleveland, Ohio Historically, the term microwave power module (MPM) has been associated with a small, fully integrated, self-contained radio frequency (RF) amplifier that combines both solid-state and microwave vacuum electronics technologies. Typically, the output power of these MPMs is on the order of about 100 Watts CW over an octave bandwidth. The MPMs require both a solid-state amplifier at the front end and a microwave vacuum electronics amplifier at the back end. However, such MPMs cannot be utilized for communications because the MPMs are not optimized for linearity or efficiency. Also, the MPMs can be very expensive to manufacture, particularly when modules are produced in very small quantities for space applications. Also, a kilovolt (kV) class power supply is required to power the traveling-wave tube amplifier, which is a part of the microwave vacuum electronics.

Posted in: Briefs, Power Management

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.