Electronics & Computers

Fourier Transform Spectrometer on Autonomous Self-Healing Hardware Platform

This liquid crystal waveguide-based platform provides self-healing for electronics in dangerous or hard-to-reach locations. NASA’s Jet Propulsion Laboratory, Pasadena, California The autonomous self-healing (eDNA) hardware platform is a reconfigurable field-programmable gate-array (FPGA)-type platform developed by Technical University of Denmark (patent: WO/2010/060923). It is capable of autonomously reconfiguring itself in case a fault is detected and, thusly, restoring functionality at a fault-free location on the chip.

Posted in: Electronics & Computers, Briefs

Read More >>

Low-Temperature-Compatible Electronics for a Miniature Nuclear Magnetic Resonance Spectrometer

The electronics have been demonstrated to function down to 77 K. NASA’s Jet Propulsion Laboratory, Pasadena, California Missions to Titan are severely limited in available mass and power because spacecraft have to travel over a billion miles to get there, consuming large masses of propellants. Thus low-mass, low-power instruments are a high priority need for Titan missions. A miniature, liquid-phase, high-resolution, pulsed proton-NMR (1H-NMR) spectrometer was developed with low mass (1.5 kg), requiring low power, that can be operated cryogenically on the surface of Titan. This work focuses on new pulsed electronic circuits, optimized for a nuclear magnetic resonance (NMR) spectrometer for analysis of hydrocarbon liquids on Titan.

Posted in: Electronics & Computers, Briefs

Read More >>

Ionospheric Delay Compensation Using a Scale Factor Based on an Altitude of a Receiver

Lyndon B. Johnson Space Center, Houston, Texas GPS receivers must compensate for the delay a GPS signal experiences as it passes through the ionosphere in order to accurately determine the position of the receiver. Receivers limited to terrestrial operation may utilize the Klobuchar parameters transmitted by the GPS satellites to model the ionosphere and remove much of this delay. However, as a GPS receiver passes through the ionosphere, such as in a spacecraft or low-Earth orbit space station, the Klobuchar model no longer adequately approximates the correction to be applied. Other models exist, particularly the IRI 2007 model created by NASA et al., but these are too computationally complex to be performed in real time by common hardware available for space implementations. Moreover, although the IRI model provides extensive insight into the historical characteristics of the ionosphere, it is purely predictive for times beyond the publication date of the model. Still other models exist that can be used during post-processing but are also not available in real time.

Posted in: Electronics & Computers, Briefs

Read More >>

Microelectronic Repair Techniques for Wafer-Level Integration

Goddard Space Flight Center, Greenbelt, Maryland Wafer-level integration was employed to mount the microshutter array for the James Webb Space Telescope (JWST) and the detector-read-out hybrid for TIRS (Thermal Infrared Sensor). In the case of the JWST substrate, two conductors (polysilicon and aluminum) separated by a silicon oxide insulating layer were fabricated on a roughly 85-mm-square silicon wafer. The size of the substrate, the density and length of the conductive traces, and the requirement of zero shorts and zero opens on the finished device necessitated nearly impossible cleanroom requirements. Techniques were developed to repair the inevitable shorts and opens created during the wafer fabrication process. The wafers were repaired to zero shorts and zero opens without degradation of device performance.

Posted in: Electronics & Computers, Briefs

Read More >>

Multi-Gigabit-Rate Radiation Hard Bus

Goddard Space Flight Center, Greenbelt, Maryland A concept was developed for a multi-gigabit-rate, radiation-hardened (RH) bus that would support open-system architecture and provide a cost-effective, high-speed interconnect. This concept is based on Advanced Science and Novel Technology Company’s SerDes system, which supports a variety of interfaces, and operates at frequencies from DC to more than 15 GHz. The design of the improved SerDes is based on the company’s proprietary library of RH cells and functional blocks using annular FETs (field-effect transistors) that are available in commercial CMOS (complementary metal-oxide-semiconductor) technologies. Bus architecture and preliminary SerDes circuit design have been accomplished during this phase. At the time of this reporting, the complete chip was to be designed and fabricated in the next phase.

Posted in: Electronics & Computers, Briefs

Read More >>

Dust Removal from Solar Cells

This system is easily integrated with current solar cell panel designs. John H. Glenn Research Center, Cleveland, Ohio Photovoltaic cell arrays are used on robotic rovers on the Mars surface, but dust accumulation on the surface of the solar cells reduces their exposure to light radiation and thus degrades their performance. Dust that accumulates without being removed limits the life of the rover’s power systems. Similarly, terrestrial solar arrays suffer from dust accumulation, especially when located in desert areas, which reduces their effectiveness. Technologies for re moval of the dust or preventing it from settling have been proposed and are being researched, but none were yet implemented on the rovers. These techniques include mechanical means, blowing stored gas, blowing pumped gas, electrically charging the surface, repelling the dust, and other techniques.

Posted in: Electronics & Computers, Briefs

Read More >>

Minimally Obstructed Communication via Acoustic Modems in Fluid-Filled Pipes

This technology can be used in the oil industry, as well as in various underwater operations. NASA’s Jet Propulsion Laboratory, Pasadena, California An acoustic modem that uses a separate phased-array transmitter and receiver has been conceived that allows the communication of high-frequency acoustic waves sideways to the transducer along the fluid-filled pipe. The transducer allows directing waves between the transmitter and the receiver with potentially minimal interferences with the piping walls. In addition, another method of directly sending communication signals up- and down-hole has been conceived that uses angled piezoelectric ring transducers.

Posted in: Electronics & Computers, Briefs

Read More >>

White Papers

Free Guide to High Performance Switching
Sponsored by Keithley
HIG™: Combining the Benefits of Inductive and Resistive Heating
Sponsored by iTherm Technologies
Domestic Versus Offshore PCB Manufacturing
Sponsored by Sunstone Circuits
Refractory Metal Fasteners for Extreme Conditions: The Basics
Sponsored by Goodfellow
Gearing Up for Parametric Test’s High Voltage Future
Sponsored by Keithley Instruments
Electrical and Mechanical Integration in Aerospace Design
Sponsored by Mentor Graphics

White Papers Sponsored By: