Electronics & Computers

COVE: A CubeSat Payload Processor

This processor is a reconfigurable FPGA-based electronics payload for advanced data processing applications. NASA’s Jet Propulsion Laboratory, Pasadena, California The COVE (CubeSat Onboard processing Validation Experiment) Payload Processor is JPL’s first on-orbit demonstration with the Xilinx Virtex-5 FPGA (field-programmable gate array). The electronics payload is designed to provide a platform for advanced data processing applications while conforming to CubeSat specifications. Measuring 9 × 9.5 × 2 cm, COVE carries the new radiation-hardened Virtex-5 FPGA (V5QV), magnetoresistive RAM (MRAM), and phase-change memory. All data access to/from the payload is facilitated through a shared memory interface via a direct serial peripheral interface (SPI). Multiple configuration options enable COVE to be reconfigured in flight with new FPGA firmware.

Posted in: Electronics & Computers, Briefs, TSP

Read More >>

Dynamic Range Enhancement of High-Speed Data Acquisition Systems

Reversible non-linear amplitude compression is used. John H. Glenn Research Center, Cleveland, Ohio The innovation is a technique to overcome hardware limitations of common high-speed data acquisition systems in order to be able to measure electronic signals with high dynamic range, wide bandwidth, and high frequency.

Posted in: Electronics & Computers, Briefs, TSP

Read More >>

HALT Technique to Predict the Reliability of Solder Joints in a Shorter Duration

This methodology can reduce product development cycle time for improvements to packaging design qualification. NASA’s Jet Propulsion Laboratory, Pasadena, California The Highly Accelerated Life Testing (HALT) process subjects test articles to accelerated combined environments of thermal, dynamic, voltage, and current to find weak links in a given product design. The technique assesses fatigue reliability of electronic packaging designs used for long-duration deep space missions by testing using a wide temperature range (–150 to +125 °C), and dynamic acceleration range of up to 50g. HALT testing uses repetitive, multiple-axis vibration combined with thermal cycling on test articles to rapidly precipitate workmanship defects, manufacturing defects, and thermal cycling-related weak links in the design. This greatly reduces the product development time by rapidly finding problems and qualifying the packaging design quickly. Test vehicles were built using advanced electronic package designs using the surface mount technology process.

Posted in: Electronics & Computers, Briefs, TSP

Read More >>

High/Low-Temperature Contactless RF Probes for Characterizing Microwave Integrated Circuits and Devices

These probing systems can be used in wireless sensors in applications such as oil wells, aircraft engines, and robotic landers. John H. Glenn Research Center, Cleveland, Ohio Low-temperature, contactless radio-frequency (RF) probing systems are necessary for characterizing sensors operating at liquid nitrogen or helium temperatures, and based on superconducting materials. The design and operation of the contactless RF probing systems relies on strong electromagnetic coupling that takes place between two different microwave transmission lines oriented in close proximity, but not in contact with each other, to ensure high thermal isolation. The goal of this work is to develop a reliable, easily constructed, less expensive, contactless RF probe for characterizing microwave integrated circuits (MICs) and devices embedded in sensors fabricated on conformal or non-planar substrates, at elevated or cryogenic temperatures.

Posted in: Electronics & Computers, Briefs, TSP

Read More >>

Multi-Tone, High-Frequency Synthesizer for CubeSat-Borne Beacon Transmitter for Radio Wave Atmospheric Propagation Studies

John H. Glenn Research Center, Cleveland, Ohio This report presents the design, construction, and test results of a novel multitone, multi-band, high-frequency synthesizer for application in a space-borne (including a CubeSat) beacon transmitter for radio wave atmospheric propagation studies. The beacon transmitter synthesizer design can be tailored to operate in those frequency bands of interest for future space-to-Earth data links, e.g., Q-band (37 to 42 GHz) and E-band (71 to 76 GHz).

Posted in: Electronics & Computers, Briefs, TSP

Read More >>

Wii Nunchuk Controller for ATHLETE Operations

NASA’s Jet Propulsion Laboratory, Pasadena, California The Arduino platform was used to develop an interface between two otherwise incompatible commercial devices in order to drive the ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Explorer) rover over long distances. The Portable Operations Terminal consists of three distinct parts: a robot-mounted ruggedized laptop computer containing all of the “ground” support software needed to operate ATHLETE, a handheld computer capable of performing simple problem diagnosis and troubleshooting, and a handheld joystick based on the Wii Nunchuk used to drive ATHLETE with one hand. The physical modifications included an Arduino electronic prototyping board with custom firmware, and various support cables, lanyards, and enclosures to make the device survive the desert environment of the field test.

Posted in: Electronics & Computers, Briefs, TSP

Read More >>

CCSDS Telemetry Decoder VHDL Core

Costly ground support equipment can be eliminated. Goddard Space Flight Center, Greenbelt, Maryland A flexible Telemetry Decoder Core (TDC) has been designed to decode Consultative Committee for Space Data Systems (CCSDS) encoded telemetry data. The TDC can be used to eliminate costly ground support equipment by placing the telemetry decoding functions in an inexpensive, commercially available field programmable gate array (FPGA) integrated circuit instead of special-purpose printed circuit boards. The TDC can also be used in the design of telemetry systems by enabling end-toend simulation of these systems’ upfront simulation before any hardware is built. The TDC was developed for the Global Precipitation Measurement (GPM) project and because of its success on that project, it will be used to verify telemetry on the Magnetospheric Multiscale (MMS) project.

Posted in: Electronics & Computers, Briefs, TSP

Read More >>