Electrical/Electronics

Modular Propulsion and Deployment Electronics System

The new approach is flexible enough to quickly accommodate design changes. Goddard Space Flight Center, Greenbelt, Maryland The Lunar Reconnaissance Orbiter (LRO) required an innovative and modular approach to the design and development of the electronics needed to control the propulsion and deployment components, as well as the electronics necessary to support safety inhibits for personnel and range requirements. Since these electronics would be designed in parallel with the systems they would interface with, they would need to be flexible enough to quickly accommodate ongoing design changes.

Posted in: Briefs, TSP

Read More >>

Stacked Capacitor Special Lead Adapter

Goddard Space Flight Center, Greenbelt, Maryland The current installation method for tall, stacked capacitors is very cumbersome because the lead form is very sharp and prone to solder cracking due to thermal cycling. An astringent installation process was developed to obtain the best chance of a successful solder joint with a proper heel fillet so the chance of cracking is minimized.

Posted in: Briefs, TSP

Read More >>

NASA Flywheel for iPad

John H. Glenn Research Center, Cleveland, Ohio NASA Flywheel is an augmented reality application intended to highlight NASA Glenn’s research efforts in the area of flywheel energy storage systems. The app utilizes a printed optical target, available on the GRC Flywheel Program brochure and through the NASA Glenn Web portal, to present users with 3D views of flywheel hardware and space applications. Additional video and imagery are also included in the application package. The software has been compiled and bundled as an iOS app for the iPad, and is intended for release through the Apple App Store.

Posted in: Briefs, TSP, Power Management

Read More >>

Three-Dimensional Photovoltaics Array for Laser-Based Power Transfer

Potential applications include situations in which there is a need to create electrical power at a remote location. Goddard Space Flight Center, Greenbelt, Maryland A standard solar array is a flat panel configured of many individual solar cells, wired in series or parallel, depending on their junction configuration and material. Since the solar flux is constant depending on the distance from the Sun, the maximum energy conversion for a given solar panel depends upon the capability to absorb as many spectral peaks as possible (different materials) across the total solar spectrum. If the radiative source is a man-made device such as a laser, parked in a different orbit or on Earth, then the impinging intensity is narrow spectrally, coherent and accurately pointed, and capable of very high intensities. Thus, the materials can be tailored to match the incoming radiation for maximum absorption.

Posted in: Briefs, TSP, Power Management

Read More >>

Self-Diagnostic Accelerometer Field Programmable Gate Array

The system could be utilized as a portable and temporarily installed diagnostic system. John H. Glenn Research Center, Cleveland, Ohio The development of the self-diagnostic accelerometer (SDA) is important to both reducing the in-flight shutdowns (IFSD) rate — and hence reducing the rate at which this component failure type can put an aircraft in jeopardy — and also as a critical enabling technology for future automated malfunction diagnostic systems. Critical sensors, such as engine sensors, are inaccessible to the operator during typical operation due to safety concerns and enclosed environment. The SDA can diagnose the sensor in-flight and remotely with minimal interference with the typical operation of the sensor. The SDA system utilizes programmed health algorithms that can automatically determine the health, therefore increasing the precision in diagnosing sensor faults by removing the erroneous perspective and opinions of a human operator. The health of the sensor could also be determined immediately, which would remove its erroneous effect on a system that depends on the sensor.

Posted in: Briefs, TSP, Power Supplies, Thermal Management, Sensors

Read More >>

Capacitively Coupled, High-Voltage Current Sensing for Extreme Environments

NASA’s Jet Propulsion Laboratory, Pasadena, California Wide-temperature and extreme-environment electronics are crucial to future missions. These missions will not have the weight and power budget for heavy harnesses and large, inefficient warm boxes. In addition, extreme-environment electronics, by their inherent nature, allow operation next to sensors in the ambient environment, reducing noise and improving precision over the warm-box-based systems employed today.

Posted in: Briefs, TSP, Electronic Components, Power Supplies, Thermal Management, Sensors

Read More >>

E-Textile Interconnect

Devices constructed from e-textiles have applications in law enforcement, by first-responders, and in wireless communications and computing. Lyndon B. Johnson Space Center, Houston, Texas E-textiles have shown great promise within the microwave and antenna community to provide a low-mass, highly conformal option that integrates extremely well with fabric-based microwave devices and antenna platforms, but often not as well with more conventional devices.

Posted in: Briefs, TSP, Antennas

Read More >>