Electrical/Electronics

Distributed Diagnostics and Prognostics

The distributed health management architecture is comprised of a network of smart sensor devices. Ames Research Center, Moffett Field, California NASA has developed a method that prevents total system failure during emergencies, allowing parts of the system to continue to function, and making overall system recovery faster. A heterogeneous set of system components monitored by a varied suite of sensors and a health monitoring framework has been developed with the power and flexibility to adapt to different diagnostic and prognostic needs. Current state-of-the-art monitoring and health management systems are mostly centralized in nature, where all the processing is reliant on a single processor. This requires information to be sent and processed in one location. With increases in the volume of sensor data as well as the need for associated processing, traditional centralized systems tend to be somewhat ungainly; in particular, when faced with multi-tasking of computationally heavy algorithms. The distributed architecture is more efficient, allows for considerable flexibility in number and location of sensors placed, scales up well, and is more robust to sensor or processor failure.

Posted in: Briefs, Electronics & Computers

Read More >>

Lens-Coupled Dielectric Waveguides

Small, lightweight, low-power interconnect solution with improved reliability and reduced packaging complexity. NASA’s Jet Propulsion Laboratory, Pasadena, California NASA’s Jet Propulsion Laboratory has developed a low-loss dielectric waveguide that provides a simple, versatile, and flexible transmission medium. Dielectric waveguides — long, solid pieces of dielectric that confine electromagnetic waves — offer high bandwidth and low transmission loss compared to conventional metallic waveguides. Despite these advantages, practical use of these waveguides has been limited because a large fraction of signal power is lost at the state-of-the-art interconnects joining conventional metallic waveguides and dielectric waveguides. JPL’s interconnect solution uses lens coupling to reduce these losses by a factor of 10 or more, yielding a reliable, cost-effective alternative to conventional waveguides.

Posted in: Briefs, Electronics & Computers

Read More >>

Sampling and Control Circuit Board for an Inertial Measurement Unit

John H. Glenn Research Center, Cleveland, Ohio Scientists at NASA’s Glenn Re - search Center have developed a circuit board that serves as a control and sampling interface to an inertial measurement unit (IMU). The circuit board provides sampling and communication abilities that allow the IMU to be sampled at precise intervals. The data is minimally processed onboard and returned to a separate processor for inclusion in an overall system. The circuit board allows the normal overhead associated with IMU data collection to be performed outside of the system processor, freeing up time to run intensive algorithms in parallel. This Glenn technology consists of the circuit schematic, board layout, and microcontroller firmware for the IMU sampling and control circuit board.

Posted in: Briefs, Electronics & Computers

Read More >>

Efficient Radiation Shielding Through Direct Metal Laser Sintering

Goddard Space Flight Center, Greenbelt, Maryland Functional and parametric degradation of microcircuits due to total ionizing dose (TID) often poses serious obstacles to deployment of critical state-of-the-art (SOTA) technologies in NASA missions. Moreover, because device dielectrics in which such degradation occurs vary from one fabrication lot to the next, these effects must be reevaluated on a lot-by-lot basis. Often, the most effective mitigation against TID degradation is the addition of radiation shielding to the electronics box. Unfortunately, shielding materials can add significant amounts of mass to a system, particularly when vulnerable parts require shielding over 4π steradians. One method for reducing mass is to apply spot shielding located only on the critical components that require it. Reduced box- and/or spacecraft-level shielding will necessitate more complex spot shielding to protect the component from the omnidirectional radiation environment.

Posted in: Briefs, Electronics & Computers

Read More >>

Using PXI to Build a High-Performance MEMS Microphone Testing System

The demand for increasing microphone signal quality from handheld mobile devices has led to the development of microphone signal processing technologies such as: HD audio, noise cancellation, active noise cancellation, beam forming, directional reception, stereo sound field reconstruction, and speech recognition. As well, devices incorporating multiple microphones are becoming more and more popular. Several newly released smart phones now integrate multiple MEMS (Micro Electrical-Mechanical System) microphones for improved background noise cancellation. All flagship smart phone models in introduced in 2015 featured three or more MEMS microphones to support HD audio, ambient noise cancellation, noise filtering, directional reception and speech recognition. Popularity of MEMS microphones is expected to grow.

Posted in: White Papers, Electronics, Data Acquisition, Sensors, Test & Measurement

Read More >>

Thermoelectric Cooling: How Does It Work? Why Should You Choose It?

There are many places one can go to get an outline on the pros and cons of different methods for enclosure cooling. Although we will briefly touch on them here, this is really an in-depth article on how to choose a Peltier (thermoelectric) air conditioner, once you have committed to the technology.

Posted in: White Papers, White Papers, Electronics & Computers

Read More >>

Beyond Telematics: IoT

This Bsquare whitepaper explains how manufacturers of commercial trucking and heavy construction equipment can move beyond simple telematics in order to increase asset uptime while reducing operating costs through comprehensive Internet of Things (IoT) technology.

Posted in: White Papers, Electronics & Computers

Read More >>

White Papers

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.