Electronics & Computers

The Road to Lightweight Vehicles

With a steady rise in fuel prices and increasing restrictions on emissions, automakers face difficult challenges as they are forced to find ways of making their cars lighter and more fuel-efficient. One way to achieve this goal is to incorporate strong, lightweight, and durable composite materials to replace heavier, more energy-hungry materials.

Posted in: Electronics & Computers, White Papers, Briefs

Read More >>

Nano-Pixels Promise Flexible, High-Res Displays

A new discovery will make it possible to create pixels just a few hundred nanometers across. The "nano-pixels" could pave the way for extremely high-resolution and low-energy thin, flexible displays for applications such as 'smart' glasses, synthetic retinas, and foldable screens.Oxford University scientists explored the link between the electrical and optical properties of phase change materials (materials that can change from an amorphous to a crystalline state). By sandwiching a seven=nanometer-thick layer of a phase change material (GST) between two layers of a transparent electrode, the team found that they could use a tiny current to 'draw' images within the sandwich "stack."Initially still images were created using an atomic force microscope, but the researchers went on to demonstrate that such tiny "stacks" can be turned into prototype pixel-like devices. These 'nano-pixels' – just 300 by 300 nanometers in size – can be electrically switched 'on and off' at will, creating the colored dots that would form the building blocks of an extremely high-resolution display technology.SourceAlso: Learn about Slot-Sampled Optical PPM Demodulation.

Posted in: Electronics & Computers, Board-Level Electronics, Electronics, Imaging, Displays/Monitors/HMIs, Materials, Semiconductors & ICs, Nanotechnology, News

Read More >>

Students Design Robotic Gardeners for Deep Space

Graduate students from the University of Colorado Boulder are designing robots to work in a deep-space habitat, tending gardens and growing food for astronaut explorers.The team's entry in the eXploration HABitat (X-Hab) Academic Innovation Challenge is called "Plants Anywhere: Plants Growing in Free Habitat Spaces." Instead of an area set aside just for vegetation, the approach calls for plants to be distributed in any available space in a deep-space habitat.In their new system, a Remotely Operated Gardening Rover, or ROGR, travels around the habitat tending to a fleet of SmartPots, or SPOTS, which would be distributed throughout the deep-space habitat's living space.The SPOTS facilitate plants growing in a small, custom- designed hydroponic growth chamber with computerized systems to monitor the vegetation's progress. Each has its own sensor run by an embedded computer."We envision dozens of SPOTS on a space habitat," said Dane Larsen who is working on a master's degree on computer science. "Telemetry in each SPOT provides data on plant condition to a computer display."The robots and plants are networked together, and the SPOTS have the ability to monitor their fruits' or vegetables' soil humidity and issue watering requests.As each SPOT monitors and supports its plants, it can determine when ROGR needs to perform plant maintenance tasks. ROGR, a robot on wheels, has a forklift to move SPOTS, a mechanical arm for manipulating the plants, and a fluid delivery system that can provide fresh water or water with nutrients.SourceAlso: Learn about a Dexterous Humanoid Robot.

Posted in: Electronics & Computers, Sensors, Test & Measurement, Monitoring, Machinery & Automation, Robotics, News

Read More >>

Scientists Demonstrate Data Teleportation for Secure Communications

Teleportation, a long-standing staple in the world of science fiction, has become a reality for scientists at the U.S. Army Research Laboratory in terms of battlefield data and image processing. Army Research Laboratory quantum information principal investigator Ronald Meyers and team member Keith Deacon recently demonstrated information teleportation using entangled photons.

Posted in: Electronics & Computers, Computers, Imaging, Photonics, Communications, News

Read More >>

High/Low-Temperature Contactless RF Probes for Characterizing Microwave Integrated Circuits and Devices

These probing systems can be used in wireless sensors in applications such as oil wells, aircraft engines, and robotic landers. John H. Glenn Research Center, Cleveland, Ohio Low-temperature, contactless radio-frequency (RF) probing systems are necessary for characterizing sensors operating at liquid nitrogen or helium temperatures, and based on superconducting materials. The design and operation of the contactless RF probing systems relies on strong electromagnetic coupling that takes place between two different microwave transmission lines oriented in close proximity, but not in contact with each other, to ensure high thermal isolation. The goal of this work is to develop a reliable, easily constructed, less expensive, contactless RF probe for characterizing microwave integrated circuits (MICs) and devices embedded in sensors fabricated on conformal or non-planar substrates, at elevated or cryogenic temperatures.

Posted in: Electronics & Computers, Briefs, TSP

Read More >>

Multi-Tone, High-Frequency Synthesizer for CubeSat-Borne Beacon Transmitter for Radio Wave Atmospheric Propagation Studies

John H. Glenn Research Center, Cleveland, Ohio This report presents the design, construction, and test results of a novel multitone, multi-band, high-frequency synthesizer for application in a space-borne (including a CubeSat) beacon transmitter for radio wave atmospheric propagation studies. The beacon transmitter synthesizer design can be tailored to operate in those frequency bands of interest for future space-to-Earth data links, e.g., Q-band (37 to 42 GHz) and E-band (71 to 76 GHz).

Posted in: Electronics & Computers, Briefs, TSP

Read More >>

Dynamic Response Determination of an Electronic Printed Circuit Board

Understanding the mechanical reliability of a PCB in an electronic system is an important part of assessing the reliability of the entire system. John Deere Electronic Solutions, Fargo, North Dakota; and John Deere India Pvt Ltd., Maharashtra, India Most of today’s automotive electronic systems are composed of two major mechanical elements: an equipment chassis or enclosure, and a printed circuit board (PCB) assembly. The PCB is composed of laminated copper and FR-4 glass epoxy. These systems often operate in severe vibration environments for extended periods without failing. The vibrations transmitted throughout the PCB induce strains in the connectors, components, and most importantly, the solder joints attaching the components to it.

Posted in: Electronics & Computers, Briefs

Read More >>