Electronics & Computers

Thermal Response of a High-Power Switch to Short Pulses

Simulations are used to calculate temperature changes that occur inside semiconductor switch modules, where measurement is not possible. Army Research Laboratory, Aberdeen Proving Ground, Maryland Semiconductor switch modules composed of Super Gate Turn-Off Thyristors (SGTOs) have been evaluated. The switches are intended to handle kiloamplevel currents and may dissipate peak powers measured in megawatts. Recent experiments measured the response of a switch module composed of eight SGTOs to single-short, high-current pulses. Simulations of those experiments were performed to calculate the temperature changes that occur inside the devices, where measurement is not possible. Worst-case operating conditions in which the switches handle several pulses within the space of 4 or 5 seconds (s) also were simulated. Modeling and simulation were performed with SolidWorks 3D modeling software and SolidWorks Simulation computational fluid dynamics software from Dassault Systèmes.

Posted in: Electronics & Computers, Briefs

Read More >>

New Algorithms Enable Self-Assembling, Printable Robots

In two new papers, MIT researchers demonstrate the promise of printable robotic components that, when heated, automatically fold into prescribed three-dimensional configurations.One paper describes a system that takes a digital specification of a 3-D shape — such as a computer-aided design, or CAD, file — and generates the 2-D patterns that would enable a piece of plastic to reproduce it through self-folding.The other paper explains how to build electrical components from self-folding laser-cut materials. The researchers present designs for resistors, inductors, and capacitors, as well as sensors and actuators — the electromechanical “muscles” that enable robots’ movements.“We have this big dream of the hardware compiler, where you can specify, ‘I want a robot that will play with my cat,’ or ‘I want a robot that will clean the floor,’ and from this high-level specification, you actually generate a working device,” said Daniela Rus, the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT.SourceAlso: Learn about Self-Assembling, Flexible, Pre-Ceramic Composite Preforms.

Posted in: Electronics & Computers, Electronic Components, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Motion Control, Motors & Drives, Power Transmission, Sensors, Software, Computer-Aided Design (CAD), Mathematical/Scientific Software, Machinery & Automation, Robotics, News

Read More >>

Motion-Sensing Keyboard Lets Users Hover and Swipe

Microsoft engineers have developed a new type of augmented mechanical keyboard, sensing rich and expressive motion gestures performed both on and directly above the device. A low-resolution matrix of infrared (IR) proximity sensors is interspersed with the keys of a regular mechanical keyboard. This results in coarse, but high frame-rate motion data.

Posted in: Electronics & Computers, PCs/Portable Computers, Mechanical Components, Sensors, Software, Mathematical/Scientific Software, News

Read More >>

New Rotary Sensor Keeps Conveyor Belts Running Smoothly

Rotary sensors can help determine the position of a moveable body in relation to an axis. They are essential to the smooth running of car engines in the automotive industry, for example. In factories, goods and products are transported from one processing station to the next via conveyor belt. For the transfer from one belt to the next to run smoothly, it must take place precisely at a specific position, which means knowing the relative position of objects on the conveyor belts as they move towards each other. This can be determined from the angle of rotation, which refers to the position of a moveable body to an axis.

Posted in: Electronics & Computers, Electronic Components, Photonics, Optics, Manufacturing & Prototyping, Industrial Controls & Automation, Consumer Product Manufacturing, Sensors, Test & Measurement, Measuring Instruments, News

Read More >>

Wireless System Paves Way for 'Electroceutical' Medical Devices

A wireless system uses the same power as a cell phone to safely transmit energy to chips the size of a grain of rice. The technology paves the way for new "electroceutical" devices to treat illness or alleviate pain.The central discovery is an engineering breakthrough that creates a new type of wireless power transfer that can safely penetrate deep inside the body. The technology could spawn a new generation of programmable microimplants – sensors to monitor vital functions deep inside the body; electrostimulators to change neural signals in the brain; and drug delivery systems to apply medicines directly to affected areas.SourceAlso: Visit Medical Design Briefs.

Posted in: Electronics & Computers, Electronic Components, Power Management, Implants & Prosthetics, Medical, Drug Delivery & Fluid Handling, Patient Monitoring, Communications, Wireless, RF & Microwave Electronics, Semiconductors & ICs, News

Read More >>

The Benefits of Integrated Video Management

Building today’s advanced airborne Video Management Systems (VMS) involves the complex and frustrating task of integrating various components that have been sourced from a mix of vendors into a workable solution. A fully integrated VMS provides a better approach that maximizes operator usability and system flexibility while ensuring optimal interoperability. Curtiss-Wright specializes in tailoring exact VMS solutions to meet clients’ platform needs, and has delivered the most reliable and fully-featured VMSs in operation today, including those used by law enforcement agencies across the UK and Europe. Integrated VMSs not only reduce cost and allow for scalability, but also provide a level of flexibility and interoperability that would be unobtainable using components from multiple vendors.

Posted in: Electronics & Computers, White Papers

Read More >>

Thinking Outside of the Box: Optimizing System Design With Embedded Expertise

Increasing technical requirements and tighter budgets provide challenges to integrators designing optimal system solutions for SWaP-constrained spaces. Dialoguing with highly knowledgeable COTS vendors early in the design process provides integrators with alternative systems engineering perspectives that result not only in better SWaP-optimized solutions, but reduced cost and schedule times. As a leading COTS vendor, Curtiss-Wright is exposed to a myriad of design problems every day, and has unmatched expertise in properly addressing constraints and providing innovative approaches to any design issue. Allowing our COTS hardware experts to mitigate SWaP-constraints early on in the embedded system design process results in highly-optimized re-architected solutions, and eliminates cost, weight, and schedule penalties.

Posted in: Electronics & Computers, White Papers

Read More >>