Electrical/Electronics

3D Printer Creates First Object in Space

The International Space Station’s 3D printer has manufactured the first 3D printed object in space, paving the way to future long-term space expeditions. NASA astronaut Butch Wilmore, commander aboard the ISS, installed the printer and conducted the first calibration test print. The first printed part was a faceplate of the extruder’s casing. This demonstrated that the printer can make replacement parts for itself.

Posted in: Articles, UpFront

Read More >>

PATTERNS: Panoptic Aspect Time Triggered Ethernet Robust Network Scheduler, Version 1.0

Lyndon B. Johnson Space Center, Houston, Texas The PATTERNS scheduling tool was created to test the multi-plane concept of a Time Triggered Ethernet (TTE) network. The TTE network interface cards used in the Orion vehicle contain three physical network ports, referred to as planes. Each plane exists to serve as a redundant communication channel for each link in the network. The scheduler used prior to PATTERNS was the vendorprovided demonstration tool, TTE-demo-scheduler, which was unable to schedule Ethernet traffic in a manner that would allow the plane-specific and plane-independent tests required to be performed.

Posted in: Articles, Briefs, TSP

Read More >>

Electromagnetic Waves Transformed from a Coherent to a Quasi-Coherent Nature

NASA’s Jet Propulsion Laboratory, Pasadena, California The transformation of naturally occurring electromagnetic waves called “chorus” from a coherent nature to a quasi-coherent nature when propagating a distance from its source was demonstrated. The aim of the mission was to study the energizing of electrons by the waves and also the loss of these particles by interaction with the waves. Both of these processes will be affected by the quasi-coherent nature of chorus. This work indicates that if coherent waves are not propagated in enhanced ionization ducting, the waves will become only quasi-coherent, and their effect of scattering trapped particles will be substantially diminished.

Posted in: Articles, Briefs

Read More >>

An Earth-Observing, Frequency-Agile Radar Receiver for RFI Mitigation

Applications include automotive collision-avoidance radar, cellular phone networks, and radar surveillance sensors for unmanned vehicles. NASA’s Jet Propulsion Laboratory, Pasadena, California The Soil Moisture Active Passive (SMAP) mission will have the first L-band radar/radiometer sensor suite dedicated to global measurements of soil moisture. For the radar sensor, the requirements for achieving high backscatter measurement accuracy from low-Earth orbit present a unique design challenge in the presence of terrestrial radio frequency interference (RFI). The SMAP radar shares the same 1,215 to 1,300 MHz spectrum used by high-power ground-based transmitters like air-route and defense surveillance radars, which can generate strong interference in a conventional fixed-frequency spaceborne radar. The noisy ground environment motivated the development of a frequency-hopping (self-tuning) feature in the radar design. As the SMAP spacecraft orbits across various regions of the Earth, the radar continually adjusts its RF operating frequency to quieter areas of the spectrum for improved fidelity in soil-moisture science data observations.

Posted in: Articles, Briefs, TSP

Read More >>

Wireless Electrical Devices Using Floating Electrodes

Langley Research Center, Hampton, Virginia A wireless, connection-free, open circuit technology can be used for developing electrical devices like sensors that need no physical contact with the properties being measured. At the core of the technology is the SansEC (Sans Electrical Connections) circuit that is damage-resilient and environmentally friendly to manufacture and use.

Posted in: Articles, Briefs, TSP, Sensors

Read More >>

Web-Enabled and Automatic Ground Processing Infrastructure Servicing the UAVSAR Airborne Missions

NASA’s Jet Propulsion Laboratory, Pasadena, California The UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) ground data processing infrastructure facilitates a wide range of mission operational processes through a centralized database, Web-enabled interfaces, and background automation. By tracking flight request submissions and flight planning activities, the database provides the most up-to-date historical records on how and when flight missions took place, as well as what radar data were collected. As data-collection missions wrap up, post-mission reports are uploaded to the database via a Web interface, while raw data are scanned into the database enabling the operator to perform polarimetric/interferometric processing on the radar data.

Posted in: Articles, Briefs, Aviation, Data Acquisition

Read More >>

Wireless Devices Used by Pilots are Vulnerable to Hacking

A new class of apps and wireless devices used by private pilots are vulnerable to a wide range of security attacks, which in some scenarios could lead to catastrophic outcomes, according to computer scientists at the University of California, San Diego and Johns Hopkins University. They examined three combinations of devices and apps most commonly used by private pilots to access the same information available to the pilot of a private jet at a fraction of the cost. All have to be paired with tablet computers to display information.

Posted in: News, Aviation, PCs/Portable Computers

Read More >>