Electronics & Computers

Magnetics Design: Specification, Performance & Economics

An informative white paper from Datatronics Romoland, Inc., provides a discussion of the design, development and delivery of affordable magnetic components. The design development process begins once performance requirements are specified. Upon design approval, the procurement of materials for a prototype build is initiated. During this stage, specifications are not final and options remain open for cost-effective production. Specifications must be reviewed and design trade-offs evaluated to ensure that the technical requirements are economically attainable with consideration given to performance and tolerance in relation to affordable cost.

Posted in: Electronics & Computers, White Papers

Read More >>

New Circuits Can Function at Temperatures Above 650°F

Engineering researchers at the University of Arkansas have designed integrated circuits that can survive at temperatures greater than 350 degrees Celsius — or roughly 660 degrees Fahrenheit. Their work, funded by the National Science Foundation, will improve the functioning of processors, drivers, controllers and other analog and digital circuits used in power electronics, automobiles and aerospace equipment, all of which must perform at high and often extreme temperatures.

Posted in: Electronics & Computers, Electronic Components, Board-Level Electronics, Electronics, Power Management, Aerospace, Transportation, Automotive, Semiconductors & ICs, News

Read More >>

Engineers Hope to Create Electronics That Stretch at the Molecular Level

Nanoengineers at the University of California, San Diego are asking what might be possible if semiconductor materials were flexible and stretchable without sacrificing electronic function?

Posted in: Electronics & Computers, Electronic Components, Board-Level Electronics, Electronics, Materials, Sensors, Semiconductors & ICs, News

Read More >>

Researchers Extract Audio from Visual Information

Researchers at MIT, Microsoft, and Adobe have developed an algorithm that can reconstruct an audio signal by analyzing minute vibrations of objects depicted in video. In one set of experiments, the team was able to recover intelligible speech from the vibrations of a potato-chip bag photographed from 15 feet away through soundproof glass."When sound hits an object, it causes the object to vibrate,” says Abe Davis, a graduate student in electrical engineering and computer science at MIT and first author on the new paper. “The motion of this vibration creates a very subtle visual signal that’s usually invisible to the naked eye. People didn’t realize that this information was there.”Reconstructing audio from video requires that the frequency of the video samples — the number of frames of video captured per second — be higher than the frequency of the audio signal. In some of their experiments, the researchers used a high-speed camera that captured 2,000 to 6,000 frames per second. The researchers’ technique has obvious applications in law enforcement and forensics, but Davis is more enthusiastic about the possibility of what he describes as a “new kind of imaging.”“We’re recovering sounds from objects,” he says. “That gives us a lot of information about the sound that’s going on around the object, but it also gives us a lot of information about the object itself, because different objects are going to respond to sound in different ways.” In ongoing work, the researchers have begun trying to determine material and structural properties of objects from their visible response to short bursts of sound. Source Also: Learn about Enhanced Auditory Alert Systems.

Posted in: Electronics & Computers, Cameras, Video, Imaging, Software, News

Read More >>

Army to Get New IED Detector Technology

Detecting improvised explosive devices in Afghanistan requires constant, intensive monitoring using rugged equipment. When Sandia researchers first demonstrated a modified miniature synthetic aperture radar (MiniSAR) system to do just that, some experts didn't believe it. But those early doubts are long gone. Sandia's Copperhead — a highly modified MiniSAR system mounted on unmanned aerial vehicles (UAVs) — has been uncovering IEDs in Afghanistan and Iraq since 2009. Now, according to senior manager Jim Hudgens, Sandia is transferring the technology to the U.S. Army to support combat military personnel.

Posted in: Electronics & Computers, Imaging, Sensors, Detectors, RF & Microwave Electronics, Antennas, Data Acquisition, Defense, News

Read More >>

COVE: A CubeSat Payload Processor

This processor is a reconfigurable FPGA-based electronics payload for advanced data processing applications. NASA’s Jet Propulsion Laboratory, Pasadena, California The COVE (CubeSat Onboard processing Validation Experiment) Payload Processor is JPL’s first on-orbit demonstration with the Xilinx Virtex-5 FPGA (field-programmable gate array). The electronics payload is designed to provide a platform for advanced data processing applications while conforming to CubeSat specifications. Measuring 9 × 9.5 × 2 cm, COVE carries the new radiation-hardened Virtex-5 FPGA (V5QV), magnetoresistive RAM (MRAM), and phase-change memory. All data access to/from the payload is facilitated through a shared memory interface via a direct serial peripheral interface (SPI). Multiple configuration options enable COVE to be reconfigured in flight with new FPGA firmware.

Posted in: Electronics & Computers, Briefs, TSP

Read More >>

Dynamic Range Enhancement of High-Speed Data Acquisition Systems

Reversible non-linear amplitude compression is used. John H. Glenn Research Center, Cleveland, Ohio The innovation is a technique to overcome hardware limitations of common high-speed data acquisition systems in order to be able to measure electronic signals with high dynamic range, wide bandwidth, and high frequency.

Posted in: Electronics & Computers, Briefs, TSP

Read More >>

White Papers

R&S® SMB100A, NRP, FSW-K6, ZVL Radar Educational Videos
Sponsored by Rohde and Schwarz A and D
Sensors For Use In Aerospace, Military and Industrial Markets
Sponsored by Columbia Research
Putting FPGAs to Work in Software Radio Systems
Sponsored by Pentek
Estimating the Effort and Cost of a DO-254 Program
Sponsored by Logic Circuit
Powering Wearable Technology and the Internet of Everything
Sponsored by Cymbet
Finding the Right Manufacturer for Your Design
Sponsored by Sunstone Circuits

White Papers Sponsored By: