Electrical/Electronics

Stencil-less Jet Printing for PCB Assembly

Imagineering, Inc. introduces stencil-less Jet Printing to facilitate quick turn around Printed Circuit Board Assembly.

Posted in: White Papers, Electronics, Electronics & Computers

Read More >>

Full RF Signal Chains from 0 Hz to 110 GHz

Analog Devices (ADI) has expanded its RF capabilities in the full signal chain, including companion products, in the full bandwidth from 0 Hz to 110 GHz.This white paper provides examples of the wider frequency spectrum covered by ADI, and explains that true DC is important. Off signal chain performance is also critical, and this paper shows how low-noise, high-stability control and power components are important to overall RF signal performance.

Posted in: White Papers, Electronics, Semiconductors & ICs, Data Acquisition, Sensors, Test & Measurement

Read More >>

Microelectronics Package for Extreme Environments

Anaren’s MSK Products Division designed, built, and tested a high-temperature, co-fired ceramic (HTCC) electronics package for use in oil and gas drilling that proved Anaren’s ability to push the boundaries for developing microelectronics packages to survive in difficult high-temperature environments.

Posted in: White Papers, White Papers, Aeronautics, Defense, Electronics, Electronics & Computers

Read More >>

Development of a Multi-User Modem for Space Telecommunications

This technology has applications in the cellphone industry. NASA’s Jet Propulsion Laboratory, Pasadena, California Efficient support of planetary surface missions typically requires an orbiting asset that acts as a relay point to/from Earth. Orbital relay passes are normally 5 to 15 minutes in duration over any specific landed site. When multiple landed assets are co-located or near-located in the same coverage circle of a single relay orbiter, their telecom relay support opportunities will overlap. This will be the case with cooperative lander missions, a lander-rover operations pair, distributed intelligent lander missions, and future deployment of multiple equipment components for support of complex sample return or manned operations. In these situations, the capability of simultaneous support to multiple landers is very valuable for mission performance and operations flexibility. This technology work enables simultaneous telecom support to multiple landers (Mars, Titan, Europa), and provides single-radio, multi-mode support to Entry, Descent & Landing (EDL) and emergency operations (e.g., demodulation + Open Loop Recording).

Posted in: Briefs, TSP, Electronics & Computers

Read More >>

Wire Bonding to Pads in Tilted Planes

This technique can be used in industries where devices need to be made smaller and lighter, such as medical, aerospace, automotive, and military. NASA’s Jet Propulsion Laboratory, Pasadena, California Scientific imaging arrays need to have their individual imaging elements arranged in a close-spaced mosaic. The typical single imaging element is a silicon chip mounted on a larger support frame. This excess area of the support frame takes away valuable imaging space from the mosaic. This appears as a grid of black (no data) in the overall mosaic image. Making the support frame smaller makes the amount of lost data smaller, and the imaging elements can be spaced more closely together. Eliminating the support frame altogether brings the imaging elements even closer. This is referred to as four-side buttable.

Posted in: Briefs, TSP, Electronics & Computers

Read More >>

cFE/CFS Evolution for Multicore Platforms

Goddard Space Flight Center, Greenbelt, Maryland This effort ports the Core Flight Executive (cFE)/Core Flight System (CFS) flight software architecture to multicore processor platforms, and provides mission developers with a common, flightready, flexible software environment that supports single, multi-processor, and multicore systems. Currently the cFE/CFS only supports single-core processors.

Posted in: Briefs, TSP, Electronics & Computers

Read More >>

Hermetic Feedthroughs for Mission-Critical Electronics

Sealed cavities are important in applications such as power electronics for missiles aboard ships or on high-altitude flights; automotive charging stations; and high-voltage power generation. Douglas Electrical Components, Randolph, New Jersey One of the most common causes of electronics failure is moisture. Because water and electronics do not mix well, several strategies exist to protect mission-critical components from moisture and condensation. One of the most successful methods involves hermetically sealed electronics cavities enabled by moisture-blocking component assemblies such as hermetic feedthrough technology.

Posted in: Briefs, Electronics & Computers

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.