Engineers Invent Method to Control Light Propagation in Waveguides

Artistic illustration of a photonic integrated device. In one arm an incident fundamental waveguide mode (with one lobe in the waveguide cross-section) is converted into the second-order mode (with two lobes in the waveguide cross-section). In the other arm the incident fundamental waveguide mode is converted into strong surface waves. (Illustration courtesy of Adam Overvig and Nanfang Yu)

A team of Columbia Engineering researchers, led by Applied Physics Assistant Professor Nanfang Yu, has invented a method to control light propagating in confined pathways, or waveguides, with high efficiency by using nano-antennas. To demonstrate this technique, they built photonic integrated devices that not only had record-small footprints but were also able to maintain optimal performance over an unprecedented broad wavelength range.

Posted in: News, Nanotechnology, Optical Components, Optics, Photonics

Spinoff: Wireless Platform Integrates Sensors with Smartphones

The platform, developed using NASA nanotechnology, paved the way for interchangeable smartphone sensors.

In 2007, when the Department of Homeland Security (DHS) issued a call for a sensor that could equip a smartphone with the ability to detect dangerous gases and chemicals, Ames Research Center scientist Jing Li had a ready response. Four years earlier, she led a team that wrote a paper on the use of carbon nanotube sensors for gas and organic vapor detection.

Posted in: Articles, Aerospace, Manufacturing & Prototyping, Nanotechnology, Sensors, Sensors and actuators, Chemicals, Gases, Nanotechnology

Design Tips For Using Coatings

When designing parts for coatings, there are some things you’ll want to take into account. Even the most impeccably designed parts sometimes face problems during the coating process. By following a few basic design tips, you can avoid potential issues down the road. Read our white paper to learn more.

Posted in: White Papers, Manufacturing & Prototyping, Coatings & Adhesives, Materials, Nanotechnology

Purifying Nanomaterials by Dissolving Excess Reactants and Catalysts in Ferric Chloride

Liquid phase temperature salts dissolve metallic catalysts like Fe, Co, or Ni, and “wash” them away.

John H. Glenn Research Center, Cleveland, Ohio

Physical and chemical properties of nanomaterials are known to be significantly different from those having larger crystallites (i.e. bigger than nano), but with the same chemical compositions. Optimal uses of these new nanomaterial properties will likely result in engineering materials that are better than what is available today. Before this can happen, characterization of the physical and chemical properties of nanomaterials is needed.

Posted in: Briefs, Materials, Nanotechnology, Catalysts, Nanomaterials

Pyramid Micro-Electrofluidic-Spray Propulsion Thruster with Integrated Attitude and Thrust Vector Control

NASA’s Jet Propulsion Laboratory, Pasadena, California

A micro-electrofluidic-spray propulsion (MEP) system was built on a micro scale, in which arrays of hundreds of nano-thrusters are etched on silicon wafers like ICs, only a centimeter on a side. Many dozens of these thruster chips can be arrayed to form a macro-thruster of finite and significant thrust. Approximately 300 centimeter-square, 100-micro-Newton micro-thrusters are arrayed in a square pyramidal structure. The pyramid is of shallow obliquity, with no more than 20° offset from the spacecraft face. This small angular offset is sufficient to provide thrust vector control (TVC) for the thruster.

Posted in: Briefs, Aerospace, Mechanical Components, Nanotechnology, Propulsion, Semiconductors & ICs

Nanopositioning Stages

Aerotech (Pittsburgh, PA) offers the QNP-XY series piezo nanopositioning stages with resolution to 0.15 nm, linearity to 0.007%, and repeatability to 2 nm. The stages provide a variety of travel lengths (100 μm to 600 μm), feedback options, and vacuum versions, as well as resonant frequency up to 885 Hz. The capacitive sensors measure the output of the positioning carriage directly. The stages are available with capacitance sensor feedback or without feedback (open-loop). Open-loop provides an option for applications where compact size, high dynamics, and subnanometer positioning resolution are required, but absolute positioning accuracy and repeatability are not required. Open-loop designs can also be used where the piezo position is controlled via an external feedback source (interferometer, vision system, photodetector, etc.).

For Free Info Visit

Posted in: Products, Manufacturing & Prototyping, Motion Control, Nanotechnology

Carbon Nanotube Tower-Based Supercapacitor

A new technology to create electrochemical double-layer supercapacitors is provided using carbon nanotubes as electrodes of the storage medium. This invention allows efficient transport between the capacitor electrodes through the porous nature of the nanotubes, and has a low interface resistance between the electrode material and the collector. Carbon nanotubes directly grown on a metal surface are used to improve the supercapacitor performance. The nanotubes offer a high surface area and usable porosity for a given volume and mass, both of which are highly desirable for supercapacitor operation.

Posted in: Briefs, Energy, Energy Storage, Materials, Nanotechnology, Physical Sciences, Ultracapacitors and supercapacitors, Metallurgy, Nanomaterials

Zinc Oxide Materials Power Tiny Energy Harvesting Devices

Many types of smart devices are readily available and convenient to use. The goal now is to make wearable electronics that are flexible, sustainable, and powered by ambient renewable energy. This last goal inspired researchers to explore how the attractive physical features of zinc oxide (ZnO) materials could be used to tap into abundant mechanical energy sources to power micro devices.

They discovered that inserting aluminum nitride insulating layers into ZnO-based energy harvesting devices led to a significant improvement of the devices’ performance. The group’s findings are expected to provide an effective approach for realizing “nanogenerators” for self-powered electronic systems such as portable communication devices, healthcare monitoring devices, environmental monitoring devices, and implantable medical devices.


Posted in: News, Electronic Components, Electronics & Computers, Energy, Energy Harvesting, Renewable Energy, Materials, Metals, Nanotechnology, Semiconductors & ICs

Wearable Nanowire Sensors Monitor Electrophysiological Signals

Researchers from North Carolina State University have developed a new, wearable sensor that uses silver nanowires to monitor electrophysiological signals, such as electrocardiography (EKG) or electromyography (EMG). The new sensor is as accurate as the “wet electrode” sensors used in hospitals, but can be used for long-term monitoring and when a patient is moving.

Posted in: News, News, Electronic Components, Electronics & Computers, Medical, Patient Monitoring, Nanotechnology, Semiconductors & ICs, Sensors

Foldable Material Can Support Many Times its Weight

Researchers at Drexel University and Dalian University of Technology in China have chemically engineered a new, electrically conductive nanomaterial that is flexible enough to fold, but strong enough to support many times its own weight. They believe it can be used to improve electrical energy storage, water filtration, and radio frequency shielding in technology from portable electronics to coaxial cables.

Posted in: News, Aerospace, Defense, Energy, Energy Storage, Materials, Nanotechnology, RF & Microwave Electronics

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.