Special Coverage

Home

Wii Nunchuk Controller for ATHLETE Operations

NASA’s Jet Propulsion Laboratory, Pasadena, California The Arduino platform was used to develop an interface between two otherwise incompatible commercial devices in order to drive the ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Explorer) rover over long distances. The Portable Operations Terminal consists of three distinct parts: a robot-mounted ruggedized laptop computer containing all of the “ground” support software needed to operate ATHLETE, a handheld computer capable of performing simple problem diagnosis and troubleshooting, and a handheld joystick based on the Wii Nunchuk used to drive ATHLETE with one hand. The physical modifications included an Arduino electronic prototyping board with custom firmware, and various support cables, lanyards, and enclosures to make the device survive the desert environment of the field test.

Posted in: Electronics & Computers, Briefs

Read More >>

Full-Cell Evaluation/Screening Technique for New Battery Chemistries

A full-cell configuration with a limited electrolyte in the cell is used to reflect the actual cell build conditions. John H. Glenn Research Center, Cleveland, Ohio A quick and cost-effective evaluation/screening technique for new battery chemistries was developed that integrates the individual advanced cell component in a full-cell format to identify the critical issues, such as cell component interaction and compatibility before proceeding to commercial production. To make the assessment more practical, a unique way of introducing limited electrolyte was developed. This technique enabled fast and low-cost screening to address any potential issues.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Growth Method for Chalcongenide Phase-Change Nanostructures

Nanometer-scale materials can provide smaller devices than those currently available. Ames Research Center, Moffett Field, California Recently, one-dimensional (1-D) nanostructures, such as nanowires and nanotubes, have become the focal point of research in nanotechnology due to their fascinating properties. These properties are intrinsically associated with low dimensionality and small diameters, which may lead to unique applications in various nanoscale devices. It is generally accepted that 1-D nanostructures provide an excellent test ground for understanding the dependence of physical, electrical, thermal, optical, and mechanical properties on material dimensionality and physical size. In particular, 1-D semiconductor nanostructures, which exhibit different properties as compared with their bulk or thin film counterparts, have shown great potential in future nanoelectronics applications in data storage, computing, and sensing devices.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

ELID Grinding of Large Aspheres

Goddard Space Flight Center, Greenbelt, Maryland This work focused on a manufacturing process to produce silicon carbide optical surfaces with low mid-spatial surface errors. Mid-spatial frequency (MSF) and high-spatial frequency (HSF) surface errors in the grinding of fast aspheres are amplified in hard ceramics like silicon carbide due to cyclic tool wear rates, vibration, and tool deformation.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Highly Aligned Electrospun Fibers and Mats

These mats have applications in fuel and solar cells, smart textiles, and in wound dressings and tissue engineering scaffolds. Langley Research Center, Hampton, Virginia A modified electrospinning apparatus has been created for spinning highly aligned polymer fibers. Fiber placement, orientation, and porosity are difficult to control using conventional electrospinning apparatus. Conventional electrospinning creates randomly oriented fibers that are well suited to nonwoven mats, but not to other applications. This new technology will broaden the range of engineering applications of electrospun materials. The apparatus provides a simple and inexpensive means of producing fibers and mats of controlled fiber diameter, porosity, and thickness.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Compact Regenerative Blower

The blower can be used to provide ventilation flow for astronauts in spacesuits, cooling for soldiers wearing body armor, or in personal cooling systems for construction work, law enforcement, or firefighting. Lyndon B. Johnson Space Center, Houston, Texas The regenerative blower provides air flow through structures or systems that have relatively high flow resistance. Specifically, the regenerative blower was designed to provide a flow of ventilation gas through a spacesuit and its portable life support system (PLSS). Since the ventilation gas is primarily oxygen, fire prevention is a critical design requirement.

Posted in: Mechanics, Mechanical Components, Briefs

Read More >>

Shape-Memory-Alloy-Based Launch Lock

This low-mass, low-power lock can be activated multiple times. NASA’s Jet Propulsion Laboratory, Pasadena, California Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electromechanical or NiTi-driven pin pullers that are one-time activation mechanisms. Generally, the use of piezoelectric activation provides high-precision nanometer accuracy, but they rely on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components, allowing the shaft’s free motion, which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. There are many mechanisms that require the capability of being activated multiple times, and the disclosed concept addresses this need.

Posted in: Mechanics, Mechanical Components, Briefs

Read More >>