Tech Briefs

More About Reconfigurable Exploratory Robotic Vehicles

Essential to reconfigurability is modularity of hardware and software.

Modular exploratory robotic vehicles that will be able to reconfigure themselves in the field are undergoing development. These vehicles at the initial concept stage were described in “Reconfigurable Exploratory Robotic Vehicles” (NPO-20944), NASA Tech Briefs, Vol. 25, No. 7 (July 2001), page 56. Proposed for use in exploration of the surfaces of Mars and other remote planets, these vehicles and others of similar design could also be useful for exploring hostile terrain on Earth.

altTo recapitulate from the cited prior article: the modular vehicles are denoted generally by the term Axeln, where n is an even number equal to the number of main wheels. The simplest vehicle of this type is Axel2 — a two-main- wheel module that superficially resembles the rear axle plus rear wheels of an automobile (see Figure 1). In addition to the two main wheels, an Axel2 includes a passive caster wheel attached to the axle by an actuated caster link. The motion of the caster link can be used to control the rotation of the axle in order to tilt, to the desired angle, any sensors mounted on the axle. In addition to the sensors, the axle of an Axel2 houses computer modules and three motors and associated mechanisms for driving the main wheels and the caster link. An Axel2 is powered by rechargeable batteries located inside the wheel hubs.

altOne constructs an Axeln (n > 2) as an assembly of multiple Axel2s plus one or more instrument module(s) connected to each other at module interfaces (see Figure 2). The module interfaces contain standardized electrical and mechanical connections, including spring-loaded universal joints that afford some compliance to enable the modules to rotate, relative to each other, to adapt to terrain. Data are communicated between modules via fast serial links in the module interfaces.

An Axeln amounts to a train carrying n/2 – 1 instrument modules. The instrument modules contain additional computational units that, in addition to processing of instrument readings, contribute to coordination of motion. In other words, the “intelligence” of an Axeln, and thus the sophistication of the maneuvers that it can perform, increase with n. The symmetrical design of the modules enables them to operate in any stable orientation, including upsidedown; this feature contributes to robustness of operation in rough terrain. A fully developed Axeln would be able to diagnose itself to detect nonfunctional modules.

Going beyond the de scription in the cited prior article, the following additional major items of the hardware can now be reported.

Also contained within the axle of an Axel2 is a stereoscopic pair of electronic cameras to be used for navigation across terrain, for scientific observations, and for guidance in docking maneuvers.

Each module interface is an electromechanical module located at the mid-length of the axle of an Axel2. The module interface carries female parts of mating mechanisms, while instrument modules carry the male parts. The mating mechanisms include conical mating surfaces that correct for small initial misalignments to facilitate autonomous coupling of an Axel2 with an instrument module.