Life-sized, hummingbird-like, unmanned surveillance aircraft weighs two-thirds of an ounce, including batteries and video camera.

The Nano Hummingbird is a miniature aircraft developed under the Nano Air Vehicle (NAV) program funded through the Defense Advanced Research Projects Agency (DARPA). DARPA was established to prevent strategic surprise from negatively impacting U.S. national security, and to create strategic surprise for U.S. adversaries by maintaining the technological superiority of the U.S. military. The agency relies on diverse performers to apply multidisciplinary approaches to advance knowledge through basic research, and create innovative technologies that address current practical problems through applied research.

Figure 1. The Nano Hummingbird was designed to look, fly, and sound as much like a real hummingbird as possible.
For the Nano Hummingbird project, technical goals for the effort were set out by DARPA as flight test milestones for the aircraft to achieve by the end of the contract effort. The Nano Hummingbird met all — and exceeded many — of the milestones (see sidebar), even though the goal was never to replicate a hummingbird exactly, but to learn from its remarkable flying qualities, and then develop an aircraft that would look, fly, and sound as much like a real hummingbird as possible.

Over 90 percent of the design and fabrication of the aircraft and its support systems was completed by AeroVironment Inc. (Monrovia, CA). The aim of the project was to use as many off-the-shelf components as possible. The challenge for the completed project was to provide controlled, precision hovering and fast forward flight using a two-wing, flapping-wing craft that also carried its energy source and a video camera as payload.

To this stage of the project, the Nano Hummingbird is capable of climbing and descending vertically, flying sideways left and right, flying forward and backward, as well as rotating clockwise and counterclockwise, all while under remote control. The prototype is handmade and has a wingspan of 16 cm (6.5") tip-to-tip, and a total flying weight of 19 grams (2/3 ounce), which is less than the weight of a common AA battery.

Figure 2. (a) The Nano Hummingbird’s stringbased flapping mechanism geometry illustrates the mechanism configuration (top), then the forestroke (2nd and 3rd from top) motions, and backstroke (4th and 5th from top) motions. (b) The final string-based, large-amplitude flapping mechanism for the Nano Hummingbird aircraft was made with an aluminum frame and PEEK gears.
The prototype includes all the systems required for flight: batteries, motors, communications systems, and video camera. It can also be fitted with a removable body fairing, which is shaped to look like a real hummingbird. Even though the aircraft is larger and heavier than an average hummingbird, it is still smaller and lighter than the largest hummingbird currently found in nature.

The typical flight endurance of the final Nano Hummingbird is between 5 and 11 minutes, depending on how the aircraft is outfitted with batteries and payload. It is expected that with planned weight reductions and system efficiency improvements, the flight endurance could effectively double.

The hummingbird has an onboard stability and control system that allows seamless and simple remote piloting of hover flight to fast forward flight. It is configured with a micro, color video camera that transmits continuous real-time video to the pilot operator during the flight, and is displayed on a small LCD screen on the hand control unit. In the future, AeroVironment plans to develop collision avoidance capabilities to allow for semi-autonomous indoor flying, video-aided navigation, GPS-aided navigation, and long-range communications.

Significant effort was spent miniaturizing the flapping and control mechanisms while maintaining stiffness and precision. Flapping wing designs are heavily influenced by the unsteady aspects of the flapping motion, both structurally and aerodynamically. A large number of possible degrees of freedom in the kinematics of the system made the design problem a complicated one. Nonetheless, based on earlier ornithopter wing design research, a flexible membrane was ultimately used, which allowed the wing to passively deform, since active control of wing shape was infeasible.

Quantitative analysis of the wings was based around the metric of thrust per motor shaft power, as mechanism power consumption is not readily separable from the aerodynamic power. So, shaft power was converted from motor input voltage and current using a well-tested model of the drive motor, which was manufactured by maxon precision motors (Fall River, MA). Their motors were used in the Nano Hummingbird for their efficiency and longevity, among other key characteristics.