Pure organic compounds that glow in jewel tones could potentially lead to cheaper, more efficient, and flexible display screens, among other applications. University of Michigan researcher Jinsang Kim and his colleagues have developed a new class of material that shines with phosphorescence — a property that has previously been seen only in non-organic compounds or organometallics.
“Purely organic materials haven't been able to generate meaningful phosphorescence emissions. We believe this is the first example of an organic that can compete with an organometallic in terms of brightness and color tuning capability,” said Kim, an associate professor of materials science and engineering, chemical engineering, macromolecular science and engineering, and biomedical engineering.
The new phosphors exhibit quantum yields of 55 percent. Quantum yield, a measure of a material's efficiency and brightness, refers to how much energy an electron dissipates as light instead of heat as it descends from an excited state to a ground state. Current pure organic compounds have a yield of essentially zero.
In Kim's phosphors, the light comes from molecules of oxygen and carbon known as aromatic carbonyls — compounds that produce phosphorescence, but weakly and under special circumstances such as extremely low temperatures. What's unique about these new materials is that the aromatic carbonyls form strong halogen bonds with halogens in the crystal to pack the molecules tightly. This arrangement suppresses vibration and heat energy losses as the excited electrons fall back to the ground state, leading to strong phosphorescence.
“By combining aromatic carbonyls with tight halogen bonding, we achieve phosphorescence that is much brighter and in practical conditions,” said Onas Bolton, who recently received his Ph.D. in Materials Science and Engineering.
This new method offers an easier way to make high-energy blue organic phosphors, which are difficult to achieve with organometallics.
Organic light-emitting diodes are lighter and cheaper to manufacture than their non-organic counterparts, which are made primarily of ceramics. Today's OLEDs still contain small amounts of precious metals, though. These new compounds can bring the price down even further, because they don't require precious metals. They're made primarily of inexpensive carbon, oxygen, chlorine, and bromine.
“This is in the beginning stage, but we expect that it will not be long before our simple materials will be available commercially for device applications,” Kim said. “And we expect they will bring a big change in the LED and solid-state lighting industries because our compounds are very cheap and easy to synthesize and tune the chemical structure to achieve different colors and properties.”