While researchers have come up with hierarchical structures in the design of new materials, going from a computer model to the production of physical artifacts has been a persistent challenge. Hierarchical structures that give natural composites their strength are self-assembled through electrochemical reactions, a process not easily replicated in the lab.
Now researchers at MIT have developed an approach that allows them to turn their designs into reality. In just a few hours, they can move directly from a multiscale computer model of a synthetic material to the creation of physical samples.
Using computer-optimized designs of soft and stiff polymers placed in geometric patterns that replicate nature’s own patterns, and a 3-D printer that prints with two polymers at once, the team produced samples of synthetic materials that have fracture behavior similar to bone.
The researchers created three synthetic composite materials, each of which is one-eighth inch thick and about 5-by-7 inches in size. The first sample simulates the mechanical properties of bone and nacre (also known as mother of pearl). This synthetic has a microscopic pattern that looks like a staggered brick-and-mortar wall: A soft black polymer works as the mortar, and a stiff blue polymer forms the bricks. Another composite simulates the mineral calcite, with an inverted brick-and-mortar pattern featuring soft bricks enclosed in stiff polymer cells. The third composite has a diamond pattern resembling snakeskin.
Also: Learn about Nanocomposite Carbon Fibers and Composite Cylinders.

