A process using a modified dielectrophoresis device separates single-walled carbon nanotubes (SWNTs) according to their polarizability in electric fields. This depends on the size and dielectric constant of individual nanotubes and easily separates metallic from semiconducting nanotubes. Separation by length has also been demonstrated. Partial separation (enrichment) according to bandgap (which is linked to polarizability) has also been shown and can be improved to full separation of individual types of semiconducting SWNTs with better control over operational parameters and the length of SWNT starting material. This process and device can be scaled affordably to generate useful amounts of semiconducting SWNTs for electronic device development and production.

In this study, a flow injection dielectrophoresis technique was used with a modified dielectrophoresis device. The length, width, and height of the modified chamber were 28, 2.5, and 0.025 cm, respectively. On the bottom of the chamber, there are two arrays of 50-μm-wide, 2-μm-thick gold electrodes, which are connected to an AC voltage generator and are alternately arranged so that every electrode is adjacent to two electrodes of the opposite polar. There is an additional plate electrode on the top of the chamber that is negatively biased.

During the experiment, a syringe pump constantly pumps in the mobile phase, 1-percent sodium dodecylbenzene sulfonate (SDBS) solution, into the chamber. The frequency and voltage are set to 1 MHz and 10 V peak-to-peak, respectively. About 150 μL of SWNTs in 1-percent SDBS decanted solution are injected to the mobile phase through a septum near the entrance of the chamber. The flow rate of the mobile phase is set to 0.02 cm3/min. The injected SWNTs sample flows through the chamber before it is lead into a fluorescence flow-through cell and collected for further analysis. The flow-through cell has three windows, thus allowing the fluorometer to collect fluorescence spectrum and visible absorption spectrums simultaneously.

Dielectrophoresis field-flow fractionation (DEP-FFF) generally depends on interaction of a sedimentation force and DEP force for particle separation, and SWNTs are neutrally buoyant in water. In this innovation, the third electrode was added to create a sedimentation force based on DC electrophoresis. This makes this particular device applicable to separations on any neutrally buoyant particles in solution and a more general process for a broad range of nanomaterials sorting and separations.

This work was done by Howard K. Schmidt, Haiqing Peng, Noe Alvarez, Manuel Mendes, and Matteo Pasquali of Rice University for Johnson Space Center. For further information, contact the JSC Innovation Partnerships Office at (281) 483-3809.

In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to:

Rice University
Office of Technology Transfer—MS 705
P.O. Box 1892
Houston, TX 77005
Phone No.: (713) 348-6188
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Refer to MSC-24368-1/70-1, volume and number of this NASA Tech Briefs issue, and the page number.

NASA Tech Briefs Magazine

This article first appeared in the August, 2011 issue of NASA Tech Briefs Magazine.

Read more articles from this issue here.

Read more articles from the archives here.