Scientists working at SLAC's Linac Coherent Light Source have captured the first single-shot X-ray microscope image of a magnetic nanostructure and shown that it can be done without damaging the material.
This result not only demonstrates the success of a powerful new X-ray technique, but it also means that in the future researchers should be able to make movies showing tiny magnetic domains in the act of switching polarity, the process at the heart of computer hard-disk drives and future magnetic memory technologies. Understanding the details of magnetic switching could lead to faster, denser and more energy-efficient data storage devices.
The experiments took place at the LCLS’s Soft X-Ray Materials Science instrument. Scientists aimed ultrashort pulses of specially prepared X-rays at a sample made of 40 alternating layers of the metals cobalt and palladium, each layer less than a nanometer thick. Before hitting the sample, the X-ray beam was circularly polarized – that is, converted to waves that look like corkscrews, rotating around the beam either to the left or the right.
Also: Learn about optical density analysis of X-rays.

