For researchers in the biological sciences, the future training of robots has been made much easier thanks to a new program called “PaR-PaR.” Nathan Hillson, a biochemist at the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI), led the development of PaR-PaR, which stands for Programming a Robot. PaR-PaR, a simple high-level, biology-friendly, robot-programming language, allows researchers to make better use of liquid-handling robots.

The PaR-PaR language uses an object-oriented approach that represents physical laboratory objects – including reagents, plastic consumables and laboratory devices – as virtual objects. Each object has associated properties, such as a name and a physical location, and multiple objects can be grouped together to create a new composite object with its own properties.

“Our vision was for a single protocol to be executable across different robotic platforms in different laboratories, just as a single computer software program is executable across multiple brands of computer hardware,” Hillson says. “We also wanted robotics to be accessible to biologists, not just to robot specialist programmers, and for a laboratory that has a particular brand of robot to benefit from a wide variety of software and protocols.”

Source 

Also: Read other Software tech briefs.


Topics: