The Compressible Flow Toolbox is primarily a MATLAB-language implementation of a set of algorithms that solve approximately 280 linear and nonlinear classical equations for compressible flow. The toolbox is useful for analysis of one-dimensional steady flow with either constant entropy, friction, heat transfer, or Mach number >1. The toolbox also contains algorithms for comparing and validating the equation- solving algorithms against solutions previously published in open literature. The classical equations solved by the Compressible Flow Toolbox are as follows:

  • The isentropic-flow equations,
  • The Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction),
  • The Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section),
  • The normal-shock equations,
  • The oblique-shock equations, and
  • The expansion equations.

This program was written by Kevin J. Melcher of Glenn Research Center. For further information, access the Technical Support Package (TSP) free on-line at www.techbriefs.com/tsp under the Software category.

Inquiries concerning rights for the commercial use of this invention should be addressed to:

NASA Glenn Research Center

Innovative Partnerships Office

Attn: Steve Fedor

Mail Stop 4–8

21000 Brookpark Road

Cleveland, Ohio 44135.

Refer to LEW-17898-1.



Magazine cover
NASA Tech Briefs Magazine

This article first appeared in the September, 2006 issue of NASA Tech Briefs Magazine (Vol. 30 No. 9).

Read more articles from the archives here.