The LINFLUX-AE computer code predicts flutter and forced responses of blades and vanes in turbomachines under subsonic, transonic, and supersonic flow conditions. The code solves the Euler equations of unsteady flow in a blade passage under the assumption that the blades vibrate harmonically at small amplitudes. The steady-state nonlinear Euler equations are solved by a separate program, then equations for unsteady flow components are obtained through linearization around the steadystate solution. A structural-dynamics analysis (see figure) is performed to determine the frequencies and mode shapes of blade vibrations, a preprocessor interpolates mode shapes from the structural-dynamics mesh onto the LINFLUX computational- fluid-dynamics mesh, and an interface code is used to convert the steady-state flow solution to a form required by LINFLUX. Then LINFLUX solves the linearized equations in the frequency domain to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. A postprocessor uses the unsteady pressures to calculate generalized aerodynamic forces, response amplitudes, and eigenvalues (which determine the flutter frequency and damping). In comparison with the TURBO-AE aeroelastica nalysis code, which solves the equations in the time domain, LINFLUX-AE is 6 to 7 times faster.

Blade Mode Shapes are shown for first and second modes. The first mode is a bending mode at 822Hz, and the second mode is a torsion mode at 1,882 Hz.

This program was written by J. J. Trudell, O. Mehmed, G. L. Stefko, and M. A. Bakhle of Glenn Research Center; T. S. R. Reddy of the University of Toledo; M. Montgomery of United Technologies; and J. Verdon of Ohio Aerospace Institute. For further information, access the Technical Support Package (TSP) free on-line at www.techbriefs.com/tsp under the Software category.

Inquiries concerning rights for the commercial use of this invention should be addressed to

NASA Glenn Research Center
Innovative Partnerships Office
Attn: Steve Fedor
Mail Stop 4–8
21000 Brookpark Road
Cleveland
Ohio 44135.

Refer to LEW-17880-1.



Magazine cover
NASA Tech Briefs Magazine

This article first appeared in the September, 2006 issue of NASA Tech Briefs Magazine (Vol. 30 No. 9).

Read more articles from the archives here.