Applying an electric current to specially coated glass results in radiant heat energy. This process creates a transparent heating element with near- uniform surface temperatures. Manufacturing the heating element requires an ordinary pane of float glass. A fluorine-doped tin oxide coating (SnO2:F) measuring 0.25 micron thick is applied to one surface of the glass during fabrication. The coating conducts electricity, has a very tightly controlled resistance, has no appreciable color or structure, and is quite transparent. The coating has low emissivity properties that help contribute to the efficiency of the heated glass.
The temperature of operation of the glass heater can be varied from just above room temperature to up to 350ºF (176.7ºC), as dictated by the thermal limits of the tempered float glass. Temperature levels are adjustable with precise control from 70ºF (21.1ºC) to 350ºF (176.7ºC). Adjustments can be manual or automated. With a 240-volt control unit, larger glass sizes and higher power densities are achievable. This is particularly important for heated architectural glass, given the propensity for large window sizes.
At low temperatures, glass radiators prevent condensation in high humidity and high altitudes in applications such as architectural and aircraft windows. High-temperature applications in clude, but are not limited to, medical research equipment such as incubators, as well as household appliances and food service equipment.
This work was done by Peter Gerhardinger of Thermique Technologies, LLC. For more information, click here . Inquiries concerning rights for commercial use should be addressed to:
Mike Hobbs
Thermique Technologies
2857 S. Halsted St.
Chicago, IL 60608
Tel: 312- 326-2522 x113.