Researchers braid a computer fiber with a combination of metal and textile yarns. Covering the fiber computer with traditional yarns enables it to be easily integrated into fabrics and textiles. (Image: Hamilton Osoy, IFM)

MIT researchers have developed an autonomous programmable computer in the form of an elastic fiber, which could monitor health conditions and physical activity, alerting the wearer to potential health risks in real-time. Clothing containing the fiber computer was comfortable and machine washable, and the fibers were nearly imperceptible to the wearer, the researchers report.

Unlike on-body monitoring systems known as “wearables,” which are located at a single point like the chest, wrist, or finger, fabrics and apparel have an advantage of being in contact with large areas of the body close to vital organs. As such, they present a unique opportunity to measure and understand human physiology and health.

The fiber computer contains a series of microdevices, including sensors, a microcontroller, digital memory, Bluetooth modules, optical communications, and a battery, making up all the necessary components of a computer in a single elastic fiber.

The researchers added four fiber computers to a top and a pair of leggings, with the fibers running along each limb. In their experiments, each independently programmable fiber computer operated a machine-learning model that was trained to autonomously recognize exercises performed by the wearer, resulting in an average accuracy of about 70 percent.

Surprisingly, once the researchers allowed the individual fiber computers to communicate among themselves, their collective accuracy increased to nearly 95 percent.

“Our bodies broadcast gigabytes of data through the skin every second in the form of heat, sound, biochemicals, electrical potentials, and light, all of which carry information about our activities, emotions, and health. Unfortunately, most — if not all — of it gets absorbed and then lost in the clothes we wear. Wouldn’t it be great if we could teach clothes to capture, analyze, store, and communicate this important information in the form of valuable health and activity insights?” said Senior Author Yoel Fink, Professor of Materials Science and Engineering at MIT, Principal Investigator in the Research Laboratory of Electronics (RLE) and the Institute for Soldier Nanotechnologies (ISN).

The use of the fiber computer to understand health conditions and help prevent injury will soon undergo a significant real-world test as well. U.S. Army and Navy service members will be conducting a monthlong winter research mission to the Arctic, covering 1,000 kilometers in average temperatures of -40 °F Dozens of base layer merino mesh shirts with fiber computers will be providing real-time information on the health and activity of the individuals participating on this mission, called Musk Ox II.

“In the not-too-distant future, fiber computers will allow us to run apps and get valuable health care and safety services from simple everyday apparel. We are excited to see glimpses of this future in the upcoming Arctic mission through our partners in the U.S. Army, Navy, and DARPA. Helping to keep our service members safe in the harshest environments is an honor and privilege,” Fink said.

For more information, contact Abby Abazorius at This email address is being protected from spambots. You need JavaScript enabled to view it.; 617-253-2709.



Magazine cover
Tech Briefs Magazine

This article first appeared in the February, 2026 issue of Tech Briefs Magazine (Vol. 50 No. 2).

Read more articles from the archives here.