As products become more feature-rich, manufacturers are looking at ways to improve the human-computer interface (HCI). Touchscreens, with intuitive operation and software flexibility, and screen-printed touch surfaces, with refined aesthetics and better sealing, have become extremely popular. But what these touch-input devices do not supply is tactile confirmation of (1) a button's location and (2) pressing it. The loss of this tactile information can be detrimental to user engagement and understanding, productivity, completion of transactions, safety, and satisfaction. The simple solution - add tactile feedback to make pressing a virtual button onscreen feel just like pressing a real button on a control panel.

To provide tactile feedback, the system components may vary, depending on the mass of the touch-input device, but the basic architecture is the same, allowing high-speed control over an actuator. When the user presses a graphical button, the haptic feedback system drives the actuator according to a preprogrammed tactile effect. The actuator's vibrations supply the perception that the graphical button moves, seeming to press and release as if it were mechanical. Because of the high speed and small displacement of the touch-input device, haptic feedback does not interfere with the visual qualities of the display.

To get the whole story, read the article "Tactile Feedback for Touch-input Devices" on page 6a of the November issue of Photonics Tech Briefs, or click here  .


Topics: