The space-frame lunar lander is a conceptual spacecraft or spacecraftlike system based largely on the same principles as those of the amorphous rover and the space-frame antenna described in the two immediately preceding articles. The space-frame lunar lander was originally intended to (1) land on rough lunar terrain, (2) deform itself to conform to the terrain so as to be able to remain there in a stable position and orientation, and (3) if required, further deform itself to perform various functions. In principle, the space-frame lunar lander could be used in the same way on Earth, as might be required, for example, to place meteorological sensors or a radio-communication relay station on an otherwise inaccessible mountain peak.

Also like the amorphous rover and the space-frame antenna, the space-frame lunar lander could be designed and built using currently available macroscopic electromechanical components or by exploiting microelectromechanical systems (MEMS), nanoelectromechanical systems (NEMS), or carbon nanotubes, and any or all of these versions could include control systems based partly on evolvable neural software systems. The areal mass densities of these versions are expected to be comparable to those of the corresponding versions of the space-frame antenna.
This work was done by Steven A. Curtis of Goddard Space Flight Center. For further information, contact the Goddard Innovative Partnerships Office at (301) 286-5810. GSC-14848-1

