A lightweight, low-power camera dart has been designed and tested for context imaging of sampling sites and ground surveys from an aerobot or an orbiting spacecraft in a microgravity environment. The camera penetrators also can be used to image any line-of-sight surface, such as cliff walls, that is difficult to access.
Tethered cameras to inspect the surfaces of planetary bodies use both power and signal transmission lines to operate. A tether adds the possibility of inadvertently anchoring the aerobot, and requires some form of station-keeping capability of the aerobot if extended examination time is required. The new camera penetrators are deployed without a tether, weigh less than 30 grams, and are disposable. They are designed to drop from any altitude with the boost in transmitting power currently demonstrated at approximately 100-m line-of-sight. The penetrators also can be deployed to monitor lander or rover operations from a distance, and can be used for surface surveys or for context information gathering from a touch-and-go sampling site.


Figure 2 shows the CAD models of a version of the penetrator. A low-volume array of such penetrator cameras could be deployed from an aerobot or a spacecraft onto a comet or asteroid. A system of 20 of these penetrators could be designed and built in a 1- to 2-kg mass envelope.
Possible future modifications of the camera penetrators, such as the addition of a chemical spray device, would allow the study of simple chemical reactions of reagents sprayed at the landing site and looking at the color changes. Zoom lenses also could be added for future use.
This work was done by Mircea Badescu, Jack Jones, Stewart Sherrit, and Jiunn Jenq Wu of Caltech for NASA's Jet Propulsion Laboratory. For more information, contact

